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Zusammenfassung

Die Magnetresonanztomographie ist ein leistungsfähiges bildgebendes Verfahren

zur Untersuchung der Gehirnstruktur und -funktion, das unser Verständnis der normalen

Gehirnfunktion sowie der zugrunde liegenden Mechanismen neurologischer und

psychiatrischer Störungen verbessert. Techniken des maschinellen Lernens (ML) werden

zunehmend mit Neuroimaging-Daten für die klinische Versorgung und die Forschung

eingesetzt. ML-Arbeitsabläufe sind jedoch anfällig für Fehler, wie z. B. Überanpassung

und verzerrte Ergebnisse, die zu falschen Interpretationen und Entscheidungen führen

können. Daher müssen ML-Arbeitsabläufe sorgfältig konzipiert werden. In der

vorliegenden Arbeit wurden zwei Schlüsselkomponenten des ML-Arbeitsablaufsdesign

systematisch bewertet, die für die Entwicklung unvoreingenommener und

verallgemeinerbarer ML-Modelle unerlässlich sind. Der erste Aspekt ist die e↵ektive

Beseitigung von Störsignalen, die für die Erstellung von unverfälschten Modellen ohne

Störfaktoren wichtig ist. Der zweite Aspekt ist die Verwendung verschiedener

Merkmalsräume und ML-Algorithmen für eine gegebene Aufgabe, um ein

verallgemeinerbares Modell zu finden, sowie die Auswirkungen verschiedener

Vorverarbeitungsentscheidungen auf die extrahierten Merkmale und die Modellleistung.

In Studie 1 untersuchten wir zwei Confound-Regressionstechniken zur Abschwächung

von Störsignalen in einem ML-Arbeitsablauf für die Aufgabe der Geschlechtsvorhersage

unter Verwendung von Daten aus der funktionellen Magnetresonanztomographie im

Ruhezustand. Wir fanden heraus, dass die Durchführung einer Confound-Regression im

Rahmen einer Kreuzvalidierung bei der Confound-Regression wirksam war und eine

bessere Schätzung der Generalisierungsleistung ergab als die Confound-Regression für

die gesamten Daten. In Studie 2 untersuchten wir den Einfluss verschiedener

Merkmalsräume, die aus strukturellen Magnetresonanztomographie-Daten (Volumen der

grauen Substanz) und ML-Algorithmen abgeleitet wurden, auf die Leistung und

Generalisierbarkeit der Altersvorhersage. Wir stellten fest, dass die Merkmalsräume und

ML-Algorithmen einen erheblichen Einfluss auf die Vorhersageleistung haben, ebenso

wie die Vorverarbeitungsalternativen und Merkmale aus verschiedenen Gewebetypen.

Das Gehirn-Alter-Delta war bei neurodegenerativen Erkrankungen erhöht. Im Anschluss

an Studie 2 wurde in Studie 3 die Auswirkung verschiedener

Vorverarbeitungsalternativen auf die Schätzung des Volumens der grauen Substanz
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bewertet, wobei die verschiedenen Pipelines unterschiedliche Altersvorhersageleistungen

erbrachten. Studie 4 schließlich umfasste eine systematische Überprüfung bestehender

psychometrischer Vorhersagestudien, wobei Trends in diesem Bereich aufgezeigt und

große Kohorten sowie eine externe Validierung empfohlen wurden. Insgesamt

unterstreichen unsere Ergebnisse die Bedeutung einer sorgfältigen Implementierung in

jedem Schritt des ML-Arbeitsabläufe und empfehlen die Anwendung von

Confound-Regression und eines Vorverarbeitungsschritts innerhalb der

Kreuzvalidierung, die Erforschung verschiedener Merkmalsräume und ML-Algorithmen,

die Verwendung großer Trainingskohorten zur Entwicklung optimaler und

verallgemeinerbarer Arbeitsabläufe und die Durchführung einer externen Validierung.
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Summary

Magnetic resonance imaging (MRI) is a powerful neuroimaging technique to study

brain structure and function, advancing our understanding of normal brain function as

well as the underlying mechanisms of neurological and psychiatric disorders. Machine

learning (ML) techniques have been increasingly used with neuroimaging data for

clinical care and research. However, ML workflows are prone to errors, such as

overfitting and biased outcomes, which can lead to wrong interpretations and

conclusions. Hence, there is a need for careful designing of ML workflows. The current

work systematically evaluated several key components of ML workflow design, essential

for developing unbiased and generalizable ML models. The first aspect is the e↵ective

removal of confounding signals, which is important for creating confound-free unbiased

models. The second aspect is the usage of di↵erent feature spaces and ML algorithms

for a given task to find a generalizable model—additionally, the impact of various

preprocessing choices on extracted features and model performance. In study 1, we

investigated two confound regression techniques to mitigate confounding signals in an

ML workflow for the sex prediction task using resting-state functional MRI data. We

found that performing confound regression within cross-validation (CV) was e↵ective in

confound removal and gave a better generalization performance estimate than

whole-data confound regression. In study 2, we assessed the impact of di↵erent feature

spaces derived from structural MRI data (gray matter volume; GMV) and ML

algorithms on age prediction performance and generalizability. We found a substantial

impact of feature spaces and ML algorithms on prediction performance, along with an

impact of preprocessing alternatives and features from di↵erent tissue types. Brain-age

delta was elevated in neurodegenerative disease. Following study 2, in study 3, the

impact of several preprocessing alternatives on GMV estimates was assessed, revealing

varying age prediction performance from di↵erent pipelines. Lastly, study 4 involved a

systematic review of existing psychometric prediction studies, highlighting trends in the

field and advocating for large cohorts and external validation. Overall, our findings

emphasize the importance of careful implementation at each step of ML workflow,

recommending applying confound removal and any preprocessing step within CV,

exploring various feature spaces and ML algorithms, utilizing large training cohorts for

developing optimal and generalizable workflows, and performing external validation.
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List of abbreviations

AD Alzheimer’s disease

ANTs Advanced Normalization Tools
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FSL FMRIB Software Library
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GPR Gaussian process regression
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sMRI structural magnetic resonance imaging
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1 Introduction

A World Health Organization report highlights that approximately one billion people

globally are impacted by a spectrum of neurological disorders, encompassing conditions

such as epilepsy, Alzheimer’s disease (AD), stroke, and brain injuries (Bertolote, 2007).

These disorders a↵ect people worldwide, regardless of age, gender, education, or income.

In the past 30 years, the absolute number of deaths has increased by 39%, and disability-

adjusted life-years have increased by 15%, causing a huge economic burden (Feigin et al.,

2020). This necessitates the advancement of methods and techniques to understand the

human brain and methods for early detection of disease and treatment.

Neuroscience is a multidisciplinary field of study focused on unraveling the

complexities of the nervous system, aiming to understand the intricate workings of the

brain and its role in behavior, cognition, and various physiological functions.

Neuroimaging is a powerful tool in this endeavor, providing techniques such as magnetic

resonance imaging (MRI) and Computed Tomography to study brain structure and

function. MRI is widely used in clinical practice to support clinicians in making

diagnoses and planning treatments (Hashemi et al., 2012). Unlike Computed

Tomography and Positron Emission Tomography, MRI does not use dangerous radiation

or require an injection of radioactive substances, so it is considered safe and

non-invasive. MRI allows us to study the brain in both healthy and diseased states,

advancing our understanding of normal brain function as well as the underlying

mechanisms of neurological and psychiatric disorders. Di↵erent MRI modalities can

capture anatomical, di↵usion, and functional characteristics of the brain, making it a

versatile tool for neuroimaging research and clinical diagnosis. Anatomical or structural

MRI (sMRI) provides detailed images of brain structures, while di↵usion MRI measures

the movement of water molecules, o↵ering insights into white matter connectivity.

Functional MRI (fMRI) detects changes in blood flow, enabling the observation of brain

activity patterns. Together, these modalities help unravel the complex workings of the

human brain and are invaluable in understanding neurological disorders and cognitive
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processes.

Structural magnetic resonance imaging (sMRI): It is a non-invasive imaging

technique used to examine the static anatomy of the brain by di↵erentiating between

tissue types (Ombao, 2016). This technique takes advantage of tissue-dependent

di↵erences in the proton’s rate of relaxation in the presence of a radio-frequency pulse

after placing the tissue in a powerful, uniform external magnetic field (Hashemi et al.,

2012). Images measured this way are useful for their high spatial resolution and provide

a good distinction between di↵erent tissue types that contain di↵erent proportions of

water and fats. Di↵erent images can be generated to emphasize contrast related to

di↵erent tissue characteristics. For example, T1-weighted MRI provides good contrast

between gray matter and white matter tissues, with gray matter appearing as dark gray,

white matter as lighter gray, and cerebrospinal fluid (CSF) appearing as the dark region.

T2-weighted images show CSF as bright and gray matter lighter than white matter.

Functional magnetic resonance imaging (fMRI): It provides a proxy measure for

brain activity by detecting changes associated with blood flow. This technique relies on

the fact that cerebral blood flow and neuronal activation are coupled, i.e., when an area

of the brain is activated, the blood flow to that region also increases (Soares et al.,

2016). The most common approach towards fMRI uses the

blood-oxygen-level-dependent (BOLD) contrast, which allows the measurement of the

ratio of oxygenated to deoxygenated hemoglobin in the blood. The increase in blood

flow leads to an increase in the ratio of oxygenated blood to deoxygenated blood in the

region. Oxygenated hemoglobin takes longer to lose magnetization and hence causes

stronger BOLD signals, while deoxygenated hemoglobin results in weaker BOLD signals.

Therefore, a stronger BOLD signal reflects an increase in blood flow, which reflects an

increase in neuronal activity in the brain region. Two common types of fMRI

approaches are task-based fMRI and resting-state fMRI (rs-fMRI), each o↵ering distinct

insights into brain function (Biswal et al., 1995). In task-based fMRI, participants

perform a behavioral or cognitive task in the scanner. The neuronal responses

represented by the BOLD signals during the task are compared with the baseline task to

establish a mapping between brain regions involved in the particular task execution.

Conversely, in rs-fMRI, participants are instructed to relax in the scanner. It captures

the spontaneous brain activity in the absence of tasks, shedding light on the brain’s

intrinsic organization (Fox and Raichle, 2007).
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1.1 Neuroimaging-based prediction

Machine learning (ML) involves algorithms and statistical models that enable computers

to learn from data, identify patterns, and make predictions. In the context of

neuroimaging, ML utilizes these techniques to analyze vast amounts of brain imaging

data, such as sMRI or fMRI, extracting intricate patterns useful for predicting

brain-related conditions and disease progression. For example, ML models can be

trained to learn the relationship between MRI-derived features and targets (for example,

disease vs. healthy) and then used to make predictions on new unseen data (Du et al.,

2012, Wang et al., 2015, Du et al., 2018, Nenning and Langs, 2022). This technology

holds immense promise in assisting neuroscientists and clinicians by providing e�cient

tools for diagnosing neurological disorders, identifying neurological biomarkers,

understanding brain function, predicting treatment outcomes, and ultimately advancing

personalized medicine tailored to an individual’s brain characteristics (Caspers, 2021,

Nenning and Langs, 2022).

Diverse features can be derived from di↵erent MRI modalities, which can be used

to make these predictions. For example, cortical and subcortical measurements of

volume, surface, and thickness values, or gray matter volume (GMV), white matter

volume (WMV), CSF obtained through voxel-based morphometry (VBM) analysis from

sMRI, can serve as essential inputs for training ML models (Fischl and Dale, 2000,

Ashburner and Friston, 2000). The rs-fMRI data can provide measures for spontaneous

brain activity at rest, such as local synchronization of rs-fMRI signals or regional

homogeneity (ReHo), which measures the similarity of the time series of a set of voxels

and thus reflects the temporal synchrony of the regional BOLD signal (Zang et al.,

2004). Other features measure the intrinsic connectivity of the brain by measuring the

temporal correlation in BOLD signal changes between di↵erent brain regions using

functional connectivity (FC) matrices (Biswal et al., 1995, Fox and Raichle, 2007).

Additionally, graph-theory representation of FC has been used to infer topological

characteristics of brain networks, such as modularity, centrality, and small-worldedness,

which can provide valuable insights (Wang et al., 2010, Kazeminejad and Sotero, 2019,

Khosla et al., 2019). More recently, several studies have also begun to explore the

predictive capacity of dynamic FC (Fong et al., 2019, Zhu et al., 2021). Similarly, FC

can be derived from task-based fMRI data (Ooi et al., 2022). Since di↵erent MRI

modalities o↵er complementary information, it is sometimes useful to use them together
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to get better predictive performance (Pisharady et al., 2023, Cole, 2020, De Lange et al.,

2020).

Using these features extracted from structural and functional MRI, ML models

have correctly di↵erentiated healthy control (HC) individuals from patients with

neurodegenerative disorders such as AD (Klöppel et al., 2008, Guo et al., 2017), mild

cognitive impairment (MCI) (Westman et al., 2011, Yu et al., 2017), multiple sclerosis

(Weygandt et al., 2011; Weygandt et al., 2015), Parkinson’s disease (Marquand et al.,

2013), neurodevelopment disorders such as autism spectrum disorder (Ecker et al., 2010,

Abraham et al., 2017), neuropsychiatric disorders such as schizophrenia (Zarogianni

et al., 2013, Venkataraman et al., 2012), and depression (Foland-Ross et al., 2015). This

suggests that ML models trained with MRI data could be a valuable tool for the

automatic diagnosing of diseases (Mateos-Pérez et al., 2018). It also allows studying

which regions are associated with these diseases, revealing their imaging signatures. ML

can also help in disease prognosis, predicting the likely course of the disease (Storelli

et al., 2022; Moazami et al., 2021). For instance, studies have used ML to predict the

progression of stable MCI to progressive MCI patients (Moradi et al., 2015), and

conversion of MCI to AD (Westman et al., 2011, Davatzikos et al., 2011).

The applications described above use supervised methods in the sense that they

involve training ML models using labeled data, where a target variable (e.g., disease

status) is provided to guide the learning process. Unsupervised methods, which do not

require a target variable but look for structure in the data, have also been successfully

employed. Unsupervised ML algorithms have been used to find subgroups within

diseases, for example, finding subtypes of multiple sclerosis that exhibited distinct

treatment responses (Eshaghi et al., 2021). Consensus clustering has been used to find

sub-groups of tumor patients (Choi et al., 2020) and patients with epilepsy (Lee et al.,

2020). Identification of subtypes can help develop individualized precision treatment.

Another fundamental aim of neuroscience is understanding how brain

characteristics are linked to cognitive and behavioral measures. There is evidence

stating that inter-individual variation in functional and structural patterns co-vary with

cognitive, behavioral, and demographic traits (Llera et al., 2019). Consequently, these

patterns have been used to predict various individual traits and can help identify

biomarkers for health and disease. For instance, FC has been used to predict cognitive

abilities such as fluid intelligence (Finn et al., 2015), sustained attention (Rosenberg
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et al., 2016), memory performance (Sasse et al., 2023, Meskaldji et al., 2016, Siegel

et al., 2016) in healthy and clinical populations. It has also been used to predict

personality traits such as neuroticism, extraversion, agreeableness, and openness (Nostro

et al., 2018, Hsu et al., 2018). Additionally, numerous studies have used ML to predict

demographic variables such as sex (Zhang et al., 2018, Weis et al., 2020) and age

(Franke et al., 2010, Cole et al., 2017) and achieved good performance.

Studies have highlighted di↵erences in cognition and psychopathology between the

sexes (Seeman, 1997). For instance, variations in spatial perception, memory, and verbal

skills (Miller and Halpern, 2014), a higher susceptibility of females to depression (Picco et

al., 2017), and a greater incidence of autism among males (Werling and Geschwind, 2013)

have been reported, indicating underlying di↵erences in structural and functional brain

organization between the sexes (Kaczkurkin et al., 2019). Therefore, sex prediction studies

can help with the understanding of the neurobiology of sex di↵erences, provide insights

into risks and protective factors, and eventually help to develop sex-specific treatments

(Zhang et al., 2018, Weis et al., 2020).

Since aging is a major risk factor for most neurodegenerative diseases,

individual-level quantification of atypical aging can be helpful for early detection of

disorders. Consequently, many studies have used ML methods to capture multivariate

patterns of age-related changes in the brain associated with healthy aging (Ashburner,

2007, Franke et al., 2010, Cole et al., 2018, Varikuti et al., 2018, Franke and Gaser,

2019, Baecker et al., 2021b). ML models can be trained using neuroimaging data from

healthy subjects to predict age. A higher positive di↵erence between predicted age

(brain-age) and chronological (true) age, i.e., brain-age delta or delta, indicates

“older-appearing” brains. Therefore, brain-age prediction studies can help inform about

abnormal brain aging by measuring the deviation of predicted age from chronological

age. Higher delta has been reported in several common brain disorders (Kaufmann

et al., 2019, Wrigglesworth et al., 2021, Sone et al., 2021). Higher delta has also been

known to relate to several age-related risk factors such as weaker grip strength, poorer

lung function, increased mortality risk, and poorer cognitive functions such as fluid

intelligence, processing speed, semantic verbal fluency, visual attention, and cognitive

flexibility (Cole et al., 2018, Boyle et al., 2021, Wrigglesworth et al., 2021). Thus, delta

can potentially serve as a biomarker of brain integrity.

All these applications rely on a robust and reliable ML workflow design to give
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correct predictions and interpretations. ML workflows involve several crucial steps,

including selecting a suitable ML algorithm to learn the relationship between features

and targets, getting enough training data, employing data transformation methods,

feature selection techniques, and hyperparameter tuning (Scheinost et al., 2019, Lones,

2021). Collectively, these elements form an integrated ML workflow. Despite numerous

successful demonstrations, ML workflows are susceptible to pitfalls such as overfitting

and biased model outcomes due to various factors such as model complexity and

non-representative training data, among others (Domingos, 2012, Lones, 2021, Mehrabi

et al., 2021). Such models might not generalize well and reflect existing biases in the

data, leading to erroneous interpretations and problematic conclusions. Therefore,

careful and correct implementation of an ML workflow is crucial for its application in

real-world scenarios. By recognizing the potential pitfalls and actively addressing them

in the implementation process, we can harness the power of ML while minimizing its

inherent risks. The following section outlines the steps involved in designing an ML

workflow and addresses some of the challenges encountered in ML applications.

1.2 Machine learning workflows

An ML workflow comprises various steps, including 1) Problem definition, 2) Data

collection and preparation, 3) Workflow definition, and 4) Model training and evaluation

(Figure 1). Several choices are available for each step, making designing a robust ML

workflow challenging.

1. Problem definition: The first step includes defining the target to predict (e.g.,

demographic variable, behavioral scores, or disease status) and the features to be used

(e.g., neuroimaging-derived FC or GMV). One can also define confounds, i.e., variables

related to both features and target, which one may choose not to model or consider

these relationships in their analysis (Weber et al., 2022). For example, brain size can

be a confound when predicting sex using GMV as brain size correlates with the target,

i.e., sex (males have bigger brains than females, Ritchie et al., 2018), and brain size

information is encoded in GMV features (Wiersch et al., 2023). Thus, if the study aims

to find structural brain organization di↵erences between sexes, it is essential to control for

confounds to ensure that the model learns the true signal of interest, i.e., the feature-target

relationship, and not the confound-target relationship.

2. Data collection and preparation: One needs to collect (or, in some cases, use
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existing databases) and prepare the data for training and testing the ML model. The most

fundamental assumption for the data is that it is composed of independent and identically

distributed samples, i.e., each data point is assumed to be independent of the others and

is drawn from the same underlying distribution (Bishop and Nasrabadi, 2006). Meeting

this assumption lays a strong foundation for learning, enhancing the model’s ability to

perform well on unseen data that share a similar distribution. One could control for some

confounds at the data collection stage, e.g., controlling for sex by equally sampling males

and females or controlling for age by balancing the age range in healthy and diseased

groups. When that is not feasible, post-hoc methods may be employed for confound

control (Tripepi et al., 2010, Snoek et al., 2019, Chyzhyk et al., 2022). Data cleaning

is an important part of data preparation, including imputing missing values, removing

features with too many missing values, removing duplicate values, avoiding typos, and

converting data types (Brownlee, 2020).

3. Workflow definition: It involves several key decisions. One must choose the

model(s) for the task. Choosing an appropriate model depends on the type of problem,

such as classification for predicting disease status or regression for predicting

cognitive/behavioral scores, with several choices available for both. One can decide

which model to use depending on the prior knowledge from literature, the assumed

relationship between features and target (e.g., linear vs. non-linear), the nature of the

data (number of samples and number of features), and the available computational

resources.

One can choose to apply several optional data transformations or preprocessing

steps to the features, such as confound removal, feature normalization (e.g., z-score,

robust scaler), dimensionality reduction via feature selection (e.g., variance thresholding,

information gain, high correlation filter, etc.), or feature engineering (e.g., principal

component analysis (PCA), independent component analysis, etc.), which might help

the training process (Bishop and Nasrabadi, 2006). For example, feature normalization

brings all the features on the same scale, ensuring they contribute equally to the

learning process, improving the stability of optimization algorithms. Dimensionality

reduction can help remove irrelevant or redundant features, thus providing

better-performing models. Deciding on these steps is not trivial, as each choice can

substantially impact the outcome.

Since ML aims to create models that accurately predict outcomes on new unseen
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data by learning generalizable information, testing the model on new unseen out-of-sample

test data (also called external validation) is essential. However, when a dedicated test

dataset is unavailable, a portion of the available data can serve as a proxy for test data,

allowing the assessment of the model’s generalization performance, i.e., its ability to

perform accurately on new, unseen data from the same distribution. Cross-validation

(CV) is frequently employed as a model evaluation scheme for this purpose. In K-fold

CV, the initial dataset is divided into K equally sized non-overlapping parts, where all

subsets but one are used for training the model and the remaining subset for testing. The

assignment of training and testing subsets is repeated K times, so all folds are used for

test once. The average performance across all test folds is computed as an estimate of

generalization performance (also called CV performance). If the model performs much

better on the training set than the test set, then it is overfitting. An optimization strategy,

such as random search or grid search, can be employed for optimizing hyperparameters

(parameters that are not learned by data but rather tuned for a given predictive task) or

feature preprocessing (e.g., feature selection). This is done in a nested CV (also known

as double CV), which involves doing hyperparameter optimization and feature selection

as an extra loop inside the main CV loop (Poldrack et al., 2020, Varoquaux et al., 2017,

Cawley and Talbot, 2010).

4. Model training and evaluation: Model training involves using the training

data to adjust the parameters and tune the model’s hyperparameters (from user-defined

search space) to minimize the prediction error. The training procedure yields models

with fixed parameters and hyperparameters, which can then be used to make predictions

on the test data. It is crucial to treat hyperparameters and feature optimization (e.g.,

feature selection) as part of model training to avoid data leakage. Moreover, it is essential

to check if the hyperparameters are hitting the boundaries in the defined search space

and adjust them accordingly when necessary.

After the model has been trained, it must be evaluated to determine its

performance. This is done by comparing the model’s predictions with the actual values

in the test data using appropriate evaluation metrics, such as classification accuracy (or

balanced accuracy), F1 score, and area under the receiver operating characteristic curve

for classification, or mean absolute error (MAE) and R2 for regression. It is a good

practice to report multiple metrics since di↵erent metrics can present di↵erent

perspectives on the results and increase transparency.
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1.3 Challenges

Designing a generalizable and unbiased ML workflow encompasses many challenges that

demand careful consideration. Overfitting, a common problem, involves models fitting

training data too well and performing poorly on new unseen data (Yarkoni and Westfall,

2017). This can happen because of a small sample size or high model complexity.

Another common challenge is data leakage, a phenomenon where information from

outside the training set is unintentionally included in the model, leading to an

overestimated and unrealistic performance in practice (Kapoor and Narayanan, 2022).

There can be several reasons for data leakage, such as using test data as part of training

data and performing any preprocessing or tuning hyperparameters outside CV, among

others. Another challenge is interpretability, i.e., the degree to which a human can

understand the cause of a decision (Miller, 2019). Highly accurate models may be more

complex and di�cult to understand; simpler, more interpretable models may sacrifice

some accuracy. Hence, a trade-o↵ exists between the accuracy and interpretability of

ML models (Dziugaite et al., 2020). The interpretability of a model can su↵er from

incorrect methods, for example, not controlling for confounds when investigating

brain-behavior relationships, which can lead to biased predictions driven by

confound-target relationships instead of feature-target relationships and thus misleading

conclusions. Furthermore, establishing a robust and generalizable workflow is

challenging as it involves intricate decisions about data preprocessing, feature selection,

model design, hyperparameter tuning, and additional optimization criteria depending on

the task. Addressing these challenges necessitates a holistic approach that blends

domain knowledge and sound methodologies. The current work addressed some key

challenges, including confound removal and designing a robust and generalizable

workflow.

1.3.1 Confound removal

One of the significant challenges in ML is accounting for confounding e↵ects. A

confound is a variable that influences both the independent and the dependent variables

(Pourhoseingholi et al., 2012). Features derived from neuroimaging data can contain

information uniquely associated with the target (true signal-of-interest) but also contain

information from nuisance sources, confounding the relationship between the
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neuroimaging signal and the target. Common confounding variables in neuroimaging

studies include age, sex, handedness, brain size, and in-scanner movement

(Alfaro-Almagro et al., 2021). Failure to remove confounds can lead to biased

predictions and interpretations. For example, in a sex prediction task using FC, brain

size is a confound as it is associated with sex (males having bigger brain size than

females) and is encoded in FC (Ritchie et al., 2018, Zhang et al., 2016). In such an

instance, predictions can be biased as a successful outcome may be driven by the

confounding signal (brain size di↵erences) rather than the true signal of interest (FC

di↵erences). If a study aims to maximize model performance, then the confounding

variables containing neurobiological e↵ects of interest can be used as input features;

however, if a study aims to identify true brain-behavior relationships, then it is

important to control for confounding signals.

Several approaches exist to mitigate confounding variables. One could control for

some confounds at the data collection stage by balancing the acquisition for confounds

or using randomized controlled trials (Pourhoseingholi et al., 2012). However, in

observational/epidemiological studies where data has already been collected, it is

necessary to control for confounds in a post-hoc approach. These approaches include

post-hoc counterbalancing, anti-mutual information sampling, and stratification using

pooling analysis (Tripepi et al., 2010, Snoek et al., 2019, Chyzhyk et al., 2022).

However, these methods often result in data loss and are not feasible with a small

sample. A prevalent strategy is confound regression, which involves fitting a linear

regression model on each feature separately with the confound as the predictor, and the

corresponding residuals are used as new “confound-removed” features (Todd et al., 2013,

Snoek et al., 2019).

Confound regression can be implemented through whole-data confound regression

(WDCR) or cross-validated confound regression (CVCR). WDCR, although aggressive,

su↵ers from data leakage as it constructs confound-removed features on the whole data

before CV. CVCR, on the other hand, addresses this by performing CV-consistent

confound regression within each CV fold. Though both methods are used in

neuroimaging research, the impact of these approaches on generalization estimates and

interpretability is unknown, along with their interaction with normalization methods

(Snoek et al., 2019, Pervaiz et al., 2020). Employing rank-based inverse normal

transformation for normalization after confound regression may reintroduce confounding
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e↵ects (Pain et al., 2018). This lack of knowledge of how to correctly perform confound

removal and the interaction between confound regression and normalization (Figure 1.2)

makes it di�cult to design ML workflows. Lastly, the influence of covariate and

confounding shifts on model building requires exploration.

In study 1, we addressed these gaps by empirically evaluating WDCR and CVCR

for confound removal efficacy and generalization performance, investigating normalization

interactions, and examining model deployment under covariate and confounding shifts.

We apply these investigations to predict sex from rs-fMRI data, considering brain size

and age as confounds, aiming to discern differences in functional organization between

sexes while accounting for brain size differences.

1.3.2 Designing of robust and generalizable workflows

Designing an ML workflow for a specific task involves decisions about various choices at

each step; not all can be predetermined without considering the data. In other words,

data-driven decisions are essential to develop a robust and generalizable workflow.

Many factors can influence model performance, with the feature space being a

primary consideration. Di↵erent feature spaces (Figure 1.1) can have di↵erent

information content, leading to di↵erential outcomes. Furthermore, di↵erent ML

algorithms (Figure 1.3), each with its own inductive biases, contribute to disparate

performance results. Every algorithm must embody some knowledge or assumptions to

generalize beyond the provided data (Domingos, 2012). Formalized by Wolpert as the

“no free lunch” theorem, according to which no algorithm can beat random guessing

over all possible functions to be learned (Wolpert, 1996), highlighting that there is no

single ML algorithm universally the best for all problems. So, it is recommended to try

di↵erent algorithms to evaluate what works best for the task at hand (Domingos, 2012).

Moreover, di↵erent combinations of feature spaces and ML algorithms can yield diverse

outcomes.

For instance, to design a workflow for brain-age estimation, voxel-wise GMV data

can be used directly, or additional pre-processing such as smoothing and/or resampling

can be applied, or parcel-wise averages within a brain atlas can be used as features

(Franke et al., 2010, Boyle et al., 2021, Varikuti et al., 2018, Eickho↵ et al., 2021).

Further dimensionality reduction methods, such as PCA, can improve the observations-
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to-features and signal-to-noise ratios (Franke et al., 2010, Franke et al., 2013, Gaser et al.,

2013). Choosing from a pool of ML algorithms like relevance vector regression (RVR),

support vector regression (SVR), Gaussian process regression (GPR), and kernel ridge

regression (KRR) is crucial as these choices can impact performance (Lee et al., 2021,

Baecker et al., 2021a, Lange et al., 2022). Many studies predicting age from VBM-

derived GMV have shown ⇠5–8 years of prediction errors in healthy individuals. Despite

the extensive work in this field, there remains a gap in understanding which feature spaces

and ML algorithms can e↵ectively capture the aging process and perform optimally for age

prediction. Challenges arise due to the diversity in study setups and methodology, such

as variations in training data, sample size, feature spaces, and ML algorithms, making it

di�cult to compare the results and draw valid conclusions.

There can be additional criteria to optimize for when predicting behavioral,

demographic, or cognitive variables from neuroimaging data. For example, for brain-age

estimation, the workflow should perform well on new samples from the same dataset

(high within-dataset performance) and generalize well on data from a new site (high

cross-dataset performance). The ability to make predictions that generalize across sites

is crucial. It allows for the development of diagnostic tools, biomarkers, or predictive

models that can be applied in diverse healthcare settings or research studies. It should

have high test-retest reliability, i.e., estimated age must be reliable on repeated

measurements, and exhibit longitudinal consistency, i.e., the predicted age should be

proportionally higher for later scans assuming no significant health-related interventions

between the measurements (Franke and Gaser, 2019, Cole and Franke, 2017, Sone and

Beheshti, 2022). These objectives can make designing robust and generalizable

workflows even more challenging. Overall, designing a generalizable workflow is intricate

because of the many choices available at each step, especially when a workflow is

expected to perform well in multiple criteria.

Consequently, in study 2, we studied the task of age prediction using GMV data

to develop a robust and generalizable workflow through evaluation under different

criteria important for real-world application. We examined 128 workflows encompassing

16 feature spaces derived from gray matter images (voxel-wise or parcel-wise) and eight

ML algorithms leveraging extensive neuroimaging databases containing a broad age

spectrum. We evaluated these workflows for their within-dataset and cross-dataset

performances. Following this, we delved into the test-retest reliability and the
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longitudinal consistency of predictions over time for some well-performing workflows.

All these criteria are important to ensure real-world application of delta. Additionally,

we measured the e↵ectiveness of our top-performing workflow in a clinical setting. We

examined the correlations between delta and behavioral/cognitive measures in healthy

and clinical cohorts and various factors a↵ecting these correlations. Further analyses

were carried out to study the e↵ects of preprocessing choices and the inclusion of

features from various tissue types on predictive performance.

There are many preprocessing tools available for feature extraction from

neuroimaging data, such as Statistical Parametric Mapping (SPM) (Friston, 2003),

Computational Anatomy Toolbox (CAT) (Gaser et al., 2022), and FMRIB Software

Library (FSL) (Smith et al., 2004). Prior studies have highlighted the variability in

extracted features, such as cortical thickness estimates, introduced by the choice of a

preprocessing pipeline for sMRI data (Tustison et al., 2014, Dickie et al., 2017). These

inconsistencies in the results arise from several algorithmic and parametric di↵erences

that exist in the preprocessing tasks, such as image normalization, registration, and

segmentation within pipelines (Bhagwat et al., 2021). Di↵erences in feature spaces

extracted by various preprocessing tools can impact their correlation with behavioral,

cognitive, or demographic variables. Consequently, there has been a di↵erence in the

performance of the individual-centric prediction tasks using di↵erent preprocessing

pipelines (Bhagwat et al., 2021, Tavares et al., 2020, Zhou et al., 2022). Therefore, in

study 3, we studied the impact of 10 different VBM preprocessing tools on GMV

estimation by comparing their performance for age prediction. By systematically

examining the e↵ects of various preprocessing tools on the derived features and

subsequent predictive models, study 3 contributes valuable insights into the importance

of methodological choices in neuroimaging analyses and highlights the necessity of

considering preprocessing variations when interpreting results or building predictive

models based on neuroimaging data.

1.3.3 Other general consideration in designing ML workflows

Our previous studies delved into investigating various factors impacting ML model

performance in neuroimaging analysis, including preprocessing tools choices, feature

spaces, feature preprocessing, and ML algorithms. There are numerous other factors,

such as the training sample size and the CV strategy used (leave-one-out vs. K-fold
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Figure 1: Various steps in machine learning (ML) workflow design with some
examples of (1) feature spaces, (2) preprocessing steps, and (3) ML algorithms.
First, the input data is split into training and test sets. Next, preprocessing steps are applied
exclusively to the training features, and ML models are trained using these preprocessed training
features and the target. Next, the preprocessing models from training data are applied to the
test features. Finally, the trained ML model is applied to the preprocessed test features to get
the test predictions.

CV), which can a↵ect generalization estimates (Varoquaux, 2018, Scheinost et al., 2014,

Poldrack et al., 2020). Additionally, the validation of models using external data holds

pivotal importance in ensuring they are not overfitted and aids in evaluating their

applicability in real-world scenarios. A comprehensive understanding of these factors is

crucial to devising an improved study design. To achieve this goal, in study 4, we

conducted a literature survey focusing on psychometric prediction, such as memory,

fluid intelligence, and attention in healthy subjects. Our aim was to outline the current

status and ongoing advancements concerning data, analysis methods, and reporting.

This excluded papers related to sex and age prediction and clinical applications.

1.4 Ethics Protocols

The ethics protocols were approved by the Ethics Committee of Heinrich Heine University

Düsseldorf (5193 and 2018-317-RetroDEuA).

1.5 Aims of Thesis

This work aims to assess several key components of ML workflows by predicting

demographic traits, sex, and age using neuroimaging data. While the ultimate goal for

ML in clinical application is to develop fair and trustworthy models to understand the
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disease and deliver correct treatment, starting with reliable and clinically relevant

targets such as sex and age can provide crucial understanding regarding key components

of ML workflows.

In study 1, we evaluated the methods for confound removal to understand the

e↵ect of confounds in predictive modeling and the procedures to deal with them. This

was studied using a sex prediction task (male vs. female) using ReHo and FC as

features from rs-fMRI data, with brain size and age as confounds. The additional aim

was the interpretability of the ML confound-free model to gain insights about brain

regions involved in sex prediction. We aimed to answer an important biological

question: “Are there di↵erences in the functional organization of brains between males

and females after controlling for the apparent di↵erence in brain size?”.

In study 2, the aim was to establish a robust and reliable ML workflow for age

prediction by evaluating several combinations for feature spaces derived from GMV (voxel-

wise and parcel-wise) and ML algorithms and assessing them under di↵erent scenarios

crucial for real-world applications. The additional aim was to explore the potential clinical

value of the brain-age delta as a biomarker for brain health and factors a↵ecting the

estimation.

In study 3, we studied several preprocessing alternatives for VBM analysis

commonly used for localized quantification of GMV and compared their utility for age

estimation.

In study 4, we performed a comprehensive literature survey that examined previous

studies investigating psychometric prediction based on neuroimaging data. By analyzing

the patterns and findings from these studies, we aimed to identify established and novel

concerns that can be e↵ectively acknowledged and tackled in future studies.
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Abstract. Machine learning (ML) methods are increasingly being used
to predict pathologies and biological traits using neuroimaging data. Here
controlling for confounds is essential to get unbiased estimates of gen-
eralization performance and to identify the features driving predictions.
However, a systematic evaluation of the advantages and disadvantages
of available alternatives is lacking. This makes it di�cult to compare
results across studies and to build deployment quality models. Here, we
evaluated two commonly used confound removal schemes–whole data
confound regression (WDCR) and cross-validated confound regression
(CVCR)–to understand their e�ectiveness and biases induced in gen-
eralization performance estimation. Additionally, we study the inter-
action of the confound removal schemes with Z-score normalization, a
common practice in ML modelling. We applied eight combinations of
confound removal schemes and normalization (pipelines) to decode sex
from resting-state functional MRI (rfMRI) data while controlling for two
confounds, brain size and age. We show that both schemes e�ectively
remove linear univariate and multivariate confounding e�ects resulting
in reduced model performance with CVCR providing better generaliza-
tion estimates, i.e., closer to out-of-sample performance than WDCR.
We found no e�ect of normalizing before or after confound removal. In
the presence of dataset and confound shift, four tested confound removal
procedures yielded mixed results, raising new questions. We conclude
that CVCR is a better method to control for confounding e�ects in neu-
roimaging studies. We believe that our in-depth analyses shed light on
choices associated with confound removal and hope that it generates
more interest in this problem instrumental to numerous applications.
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classification · Neuroimaging application
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1 Introduction

A critical challenge in applied machine learning is controlling for confounding
e�ects as not removing them can lead to biased predictions and interpreta-
tions. This is especially true for biological data as common underlying processes
introduce shared variance between the measurements, giving rise to confounding
e�ects and blurring the boundaries between signals and confounds. Nevertheless,
when confounds can be identified, removing their e�ects can lead to unbiased
models and better understanding of the underlying biological processes.

In the field of neuroimaging, predictive analysis using machine learning has
gained popularity for decoding phenotypes with a clear application to under-
stand brain organization and its relationship to behavior and disease [9,14,41]
with a twofold aim, (1) to establish brain-phenotype relationship by estimating
the generalization performance, and (2) to identify brain regions explaining the
variance of the phenotype. Cross-validation (CV) is employed for the first goal
while the second goal is usually achieved by identifying predictive features, e.g.,
features with a high weight assigned by a linear model. Specifically, in addition
to information uniquely associated with the target (true signal) neuroimaging
features may also contain information from nuisance sources, e.g., brain size,
confounding the relationship between the neuroimaging signal and the target.
In this case, both goals can yield biased results as a successful prediction might
be driven by the confounding signal rather than the true signal (Fig. 1a). Thus,
the confounding e�ects need to be removed to estimate generalizability and to
gain interpretability in an unbiased way. Various alternatives exist for confound
removal and are integrated within ML pipelines. However, the pros and cons of
these possibilities are not well understood.

Confounding can be controlled in the experiment design phase before data
collection by randomization, restriction and matching [27]. However, this is not
always feasible, e.g. when all the confounds are not known. Confounds can be
controlled for after data acquisition. One way is to add them as additional predic-
tors to capture the corresponding variance. However, this approach is not suit-
able for predictive modelling because it is designed to control in-sample rather
than out-of-sample (OOS) properties. Another method is post-hoc counterbal-
ancing i.e., taking a subset in which there is no empirical relationship between
the confound and the target [35]. Advanced techniques such as the anti-mutual
information sampling [10] and stratification using pooling analysis by the Mantel-
Haenszel formula [38] have been proposed. However, these methods lead to data
loss and are not feasible with a small sample and a large number of confounds.
Specifically, when matching sexes according to brain size, these methods will
represent extremes of the population and not the whole population. Of note,
confound removal can be seen as supplementary to debiasing and fair learning
[2,16,18] but here we do not investigate this angle.

One of the most common confound control approaches while using all the data
is “regressing out” their variance from the features before learning, referred to as
confound regression [35] or image correction [28]. In thismethod, a linear regression
model is fitted on each feature separately with the confounds as predictors, and the
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corresponding residuals are used as new “confound-removed” features. This app-
roach can be implemented in two possible ways. The first scheme is whole data con-
found regression (WDCR), regresses out confounds from the entire dataset at once
[28,35,37] followed by CV to estimate the generalization performance. WDCR has
yielded inconsistent results, from a substantial drop in performance [17,37] to a
similar or slightly lower performance compared to the models without confound
control [28]. This discrepancy is possibly due to di�erences in the strength of the
relationship between the confounds, the features, and the target and implemen-
tation di�erences. WDCR leads to “data-leakage” as the information from the
whole data is used to create the confound-removed features before CV. However,
the “aggressive” confound removal by WDCR has been proposed to be desirable
[25].

To alleviate issues with WDCR, a CV-consistent scheme, cross-validated con-
found regression (CVCR) has been proposed in which the linear confound regres-
sion models are estimated within CV using only the training subset, and applied
to both the training and the validation subsets. This avoids information leaking
from training into validation sets. Although both WDCR and CVCR schemes
have been used in neuroimaging studies [20,35,45], there is a lack of information
regarding how they a�ect the generalization estimates and interpretability with
one study recommending WDCR [25] while another recommending CVCR [35].

Moreover, whether to apply a feature normalization and standardization pro-
cedures, like Z-scoring (Zero mean and unit-variance features), before confound
removal or after has not been investigated. It is known that in the specific case of
normalization using rank-based inverse normal transformation (INT) after con-
found regression may reintroduce confounding e�ects [24]. Such reintroduction
of confounding e�ects can be counterproductive for model generalizability and
interpretability. Furthermore, the ability of an algorithm to learn from the data
might di�er depending upon when normalization is applied. This lack of under-
standing about the interaction between confound regression and normalization
makes it di�cult to design ML pipelines. Lastly, building models when one sus-
pects a shift in the covariates and/or in the relationship between the confounds,
the features and the target has not been studied. Several design possibilities can
be imagined and need to be evaluated.

In this work we empirically investigate three facets of the confound removal
issue, (1) evaluation of the two confound removal schemes, WDCR and CVCR,
for their e�ectiveness in removing the confounding signal and estimation of gen-
eralization performance, (2) interaction of confound removal schemes with nor-
malization, and (3) model deployment when covariate and confounding e�ect
shift is suspected. We consider prediction of sex from resting-state functional
magnetic resonance imaging (rfMRI) data while controlling for two confounds,
brain size and age. We aim to answer an important biological question “are
male and female brains functionally di�erent after controlling for the apparent
di�erence in brain size?”. With systematic evaluation of a real-world problem
reporting positive as well as negative results, we hope to attract the attention of
the machine learning community to the critical problem of confound removal.
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Fig. 1. (a) Confounding e�ect: Confound Z influences both the features X and the
target Y. In the presence of Z, the actual relationship between X and Y is masked.
For sex classification, brain size is a confound (Z) as it is associated with both rfMRI
features (X) and sex (Y). (b) Significant sex di�erence in brain size in the three data
samples used in this study.

2 Sex Classification and Brain Size

There are reports on di�erences in cognition and psychopathology between sexes
[33], such as di�erences in spatial tasks [22], females being more vulnerable to
depression [26] and autism being more prevalent in males [42]. These di�er-
ences may influence diagnostic practices and help developing sex-specific treat-
ments, making understanding neurobiology of sex di�erences essential. Accord-
ingly there has been an increasing interest in finding sex di�erences in structural
and functional properties of the brain [29,30,41].

Functional magnetic resonance imaging (fMRI) is a non-invasive technique
used to study functional–i.e. time dependent–changes in brain activity by taking
3D MRI images in succession. Even unregulated processes in the resting brain,
i.e., resting-state fMRI (rfMRI), show stable and individualized synchronies [12].
Such functional activities have been related to cognition and several phenotypes,
especially using the functional connectivity (FC) (see Sect. 4.2). Based on whole-
brain FC, the sex prediction accuracy of 75–80% was achieved with discrim-
inative features mainly located in the Default mode network (DMN) [41,45].
Another study with a lower prediction accuracy of 62% found discriminative FC
in motor, sensory, and association areas [6]. Smith and colleagues [34] reported a
higher prediction accuracy of 87%. A recent study reported sex prediction accu-
racy of 98% using multi-label learning, i.e., sex in conjunction with nine other
cognitive, behavioural and demographic variables [8].

Brain size is highly correlated with sex, with larger total brain volume in
males compared to females [4,29]; and is encoded in MRI data. Figure 1b shows
the di�erence in brain size between sexes for the data samples used in the current
study. In such a scenario, even if a model decodes sex from MRI data significantly
above chance, there is no clear understanding of the unique contribution of the
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functional features independent of brain size. It is likely that the prediction is
driven partly by brain size in addition to the functional di�erences. Zhang and
colleagues [45] have shown that the sex prediction accuracy drops from 80%
to 70% after regressing out brain size from FC, indicating an apparent e�ect of
brain size in sex prediction. Hence, there is clearly a need to study sex prediction
using rfMRI while controlling for brain size.

3 Experimental Setup

3.1 Study Design

With a limited and contrasting literature, there is a lack of knowledge of how
to perform confound removal. Here we aimed to evaluate two confound removal
schemes (WDCR and CVCR) and their interaction with the commonly used
Z-score feature normalization. We evaluated eight pipelines in total (Fig. 2a);

1. No confound removal, no Z-scoring (NCR-NZ)
2. No confound removal, with Z-scoring (NCR-Z)
3. WDCR, no Z-scoring (WDCR-NZ)
4. WDCR, Z-scoring after confound removal (WDCR-ZAC)
5. WDCR, Z-scoring before confound removal (WDCR-ZBC)
6. CVCR, no Z-scoring (CVCR-NZ)
7. CVCR, Z-scoring after confound removal (CVCR-ZAC)
8. CVCR, Z-scoring before confound removal (CVCR-ZBC)

We applied these pipelines for predicting an individual’s sex using features
derived from rfMRI data while controlling for two confounds brain size and
age. We performed two evaluations; (1) CV to estimate the generalization per-
formance and compared it with prediction on an OOS dataset, and (2) OOS
prediction with covariate and confound shift as a model deployment scenario.
The prediction performance was evaluated using AUC, F1-score and balanced
accuracy.

For evaluation-1, we used a publicly available database (HCP, see Sect. 4.1)
and carefully derived sample-1 (N = 377) and sample-2 (N = 54). After standard
preprocessing two types of features were extracted from rfMRI data, Regional
Homogeneity (ReHo) and FC (see Sect. 4.2). Each feature set was analyzed
separately using Ridge Regression and Partial Least Square Regression with all
eight pipelines. The generalization performance was estimated on sample-1 using
10 times repeated 10-fold CV. The OOS performance was evaluated on sample-2.
By comparing the CV and OOS results, we can comment on whether the CV
procedure can reliably estimate the generalization performance.

As the confounds were linearly removed from the features in a univariate way
(see Sect. 3.2) multivariate confounding e�ects might still remain. We, therefore,
assessed the e�ectiveness of confound removal pipelines in removing univari-
ate and multivariate confounding e�ects. The Pearson correlation between each
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Fig. 2. a. The schematic diagram of various combinations of confound removal schemes
and Z-score for confound removal evaluated in the study. b. Whole data confound
regression (WDCR). c. Cross-validated confound regression (CVCR).

residual feature and the brain size was calculated to check for remaining univari-
ate confounding e�ects. The adjusted r2 of the multiple linear regression model
predicting the brain size using residual features was used to check for remaining
multivariate confounding e�ects.

In neuroimaging studies it is common that the data is acquired on di�erent
scanners [40] and there may exist demographic di�erences between samples.
Such di�erences can lead to covariate shift [19] and by extension confound shift.
An ideal model should generalize well despite such di�erences. To evaluate this
(evaluation-2), we employed an additional sample (sample-3; N = 484) from a
public dataset (eNKI, see Sect. 4.1) where demographics, scanner parameters
and preprocessing are di�erent than sample-1 and 2. We tested four ways to
remove confounds from OOS data.

1. Train-to-test: The confound removal models from the train data were
applied to the OOS data. This is the standard method.

2. Test WDCR: WDCR was performed on the OOS data.
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3. Test CVCR: CVCR was performed on the OOS data, i.e. confound regres-
sion was performed within CV for OOS data and the residuals were retained.

4. Train and test combined: WDCR was performed on the combined train
and OOS data. The data was then re-split into train and test.

Methods 2, 3 aimed to obtain confound-free OOS data, with the assumptions
that confound-removed models can perform well on confound-removed OOS data
as confounds are handled within a sample. Method 4 assumes that the confound
removal linear models can capture variance from both train and OOS data. Note
that 2, 3 and 4 can only be used with su�ciently large OOS data. WDCR models
trained on sample-1 were used to predict the confound-removed OOS data. The
sample-2 and sample-3 with similar and di�erent properties to sample-1 respec-
tively were the OOS datasets. Note that for method 1, 2 and 3 trained models
(on sample-1) come from the above-mentioned pipelines used for evaluation-1.

3.2 Confound Regression

We tested two di�erent versions of confound regression, WDCR and CVCR
(Fig. 2b and c). In WDCR, using multiple linear regression we regressed out
the confounds from each of the predictors from the entire dataset before the
cross-validated procedure. Note that, this procedure uses information from the
whole dataset leading to data-leakage. In CVCR, we regressed the confounds in
a similar way to WDCR but the confound removal models were estimated on
the training data and subsequently applied to both train and validation sets. In
this way, there is no leakage from train to test.

3.3 Predictive Modelling

We used two prediction models, Ridge Regression and Partial Least Square regres-
sion. RidgeRegression (RR) uses a sumof the square penalty on themodel parame-
ters to reduces model complexity and prevent overfitting [15]. The balance between
the fit and the penalty is defined using a hyper-parameter � which we tuned in
an inner CV loop. PLS Regression (PLS) performs dimensionality reduction and
learning simultaneously, making it a popular choice when there are more features
than observations, and/or when there is multicollinearity among the features. It
has performed well in MRI-based estimations for cognitive, behavioural and demo-
graphic variables [8,45]. PLS searches for a set of latent vectors that performs a
simultaneous decomposition of predictors and the target such that these compo-
nents explain the maximum covariance between them [1]. These latent vectors are
then used for prediction. The hyperparameter for the PLS is the number of latent
variables which was tuned in an inner CV loop.

4 Data Samples and Features

4.1 Data Samples

This study included three samples. Sample 1 and 2 are two independent subsets
of the data provided by the Human Connectome Project (HCP) S1200 release
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[39]. Sample-1 contained 377 subjects (age range: 22–37, mean age: 28.6 years;
182 females), sample-2 comprised 54 subjects (age range: 22–36, mean age: 28.9
years; 28 females). As the HCP data contains siblings and twins, the samples were
constructed such that there were no siblings within or across the two samples, to
avoid biases due to any similarity in the FC of the siblings. Within each of the
two samples, males and females were matched for age, and education. Resting-
state blood oxygen level-dependent (BOLD) data comprised 1200 functional
volumes per subject, acquired on a Siemens Skyra 3T scanner with the following
parameters: TR = 720 ms, TE = 33.1 ms, flip angle = 52�, voxel size = 2 � 2 �
2 mm3, FoV = 208 � 180 mm2, matrix = 104 � 90, slices = 72. Sample-3 was
obtained from the Enhanced Nathan Kline Institute–Rockland Sample (eNKI-
RS) [23] with 484 subjects (age range: 6–85, mean age: 41.9 years; 311 females).
Images were acquired on a Siemens TimTrio 3T scanner using BOLD contrast
with the following parameters: TR = 1400 ms, TE = 30 ms, flip angle = 65�,
voxel size = 2 � 2 � 2 mm3, slices = 64. Subjects were asked to lie with eyes open,
with “relaxed” fixation on a white cross (on a dark background), think of nothing
in particular, and not to fall asleep. The CAT-12 toolbox (http://www.neuro.
uni-jena.de/cat/) was used to calculate the brain size of each subject based on
T1-weighted images. Note the stark di�erences between sample-1, 2 and sample-
3 in terms of demographics as well as scanner parameters. This selection was
made to elucidate the common scenario of data heterogeneity.

Two-sample t-test revealed significant sex di�erences in the brain size across
all the samples (p < 0.001; Fig. 1b). This clearly demonstrates that brain size
is a confound in sex prediction. There was no di�erence in age between sexes in
sample-1 but significant di�erences was observed in sample-2 and 3 (p < 0.001).
Age is not expected to be related to sex but was included as a control confound.

4.2 Pre-processing and Feature Extraction

After standard rfMRI pre-processing we extracted two types of features based
on the voxel-wise time-series.

Preprocessing. The rfMRI data needs to be pre-processed so that the e�ects
of motion in the scanner are removed as well as the brain of each subject is nor-
malized to a standard brain template (e.g., MNI-152) so that they can be com-
pared across subjects. For samples 1 and 2, the pre-processed, FIX-denoised and
spatially normalized to the MNI-152 template data provided by the HCP S1200
release was used. There was no di�erence in the movement parameters (measured
as mean framewise displacement) between males and females in both the sam-
ples. No further motion correction was performed. For sample-3, physical noise
and e�ects of motion in the scanner were removed by using FIX (FMRIB’s ICA-
based Xnoiseifier, version 1.061 as implemented in FSL 5.0.9; [13,31]). Unique
variance related to the identified artefactual independent components and 24
movement parameters [32] were then regressed from the data. The FIX-denoised
data were further preprocessed using SPM8 (Wellcome Trust Centre for Neu-
roimaging, London) and in-house Matlab scripts for movement correction and
spatial normalization to the MNI-152 template [3].
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Regions of Interest (ROI). The Dosenbach atlas was used to extract 160 ROIs
from the whole-brain data. These ROIs are spheres of 10 mm diameter, identified
from a series of meta-analyses of task-related fMRI studies and broadly cover
much of the cerebral cortex and cerebellum [11]. This atlas has been utilized in
several brain network analyses including for sex prediction [5,45].

Feature Space 1: Regional Homogeneity (ReHo) measures the similarity
of the time-series of a set of voxels and thus reflects the temporal synchrony
of the regional BOLD signal [44]. ReHo for each subject and each of the 160
ROIs was calculated as the Kendall’s coe�cient of concordance between all the
time-series of the voxels within a given ROI resulting in 160 features per subject.

Feature Space 2: Functional Connectivity (FC) is the correlation between
the time-series of di�erent brain regions [36]. For each subject, the time series
of all the voxels within a ROI were averaged and FC was calculated as the
Pearson’s correlation coe�cients between them for all pairs of ROI. These were
then transformed using Fisher’s Z-score. Each subject had a feature vector of
length 12,720 after vectorization of the lower triangle of the 160 � 160 FC matrix.

5 Results

We compiled the results from two viewpoints. We first asked which of the
pipelines incorporating confound removal provides more realistic generalization
performance estimates. Then we assessed the e�cacy of the confound removal
schemes in a model deployment scenario with data heterogeneity.

5.1 Generalization Performance Estimates

CV is commonly used to estimate generalization performance. However, it is not
without caveats [7]. Therefore, we compared CV performance of the pipelines
with “true” OOS performance. In this case, the CV was performed on sample-1
and sample-2 was used as the OOS data. PLS generally performed better than
RR, so in the following we focus on the PLS results.

As expected, the CV performance was highest without controlling for con-
founds (Table 1). AUC and F1-scores for sex prediction with ReHo were 0.838
and 0.754 and with FC were 0.874 and 0.787, respectively. Both the schemes
WDCR and CVCR showed reduced performance in line with previous studies
[25,35]. As brain size is highly correlated to sex, regressing it out from every
feature can remove sex-specific information, resulting in a lower performance.

WDCR provided lower generalization estimates than CVCR, with the bal-
anced accuracy dropping close to chance level with WDCR. One might expect
higher generalization performance with WDCR as it causes data leakage from
the train to the validation set violating the crucial assumption of independence
in cross-validated analysis. However, in this case, it leads to worse performance.
This might be because WDCR is performed on the whole dataset and hence
is more aggressive in removing the confounding signal than CVCR leading to
poorer performance. When the trained models were applied to OOS data, we
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Table 1. Comparison of the pipelines using RR and PLS. Models were trained on
sample-1 and out-of-sample/test performance was tested on sample-2.

CR Z-score Feat. Ridge regression Partial least squares

CV: Sample-1 Test: Sample-2 CV: Sample-1 Test: Sample-2

AUC F1 Acc. AUC F1 Acc. AUC F1 Acc. AUC F1 Acc.

NCR NZ ReHo 0.750 0.667 0.662 0.751 0.690 0.688 0.776 0.714 0.712 0.808 0.759 0.760

FC 0.857 0.763 0.757 0.823 0.728 0.725 0.874 0.787 0.785 0.835 0.762 0.761

NCR Z ReHo 0.829 0.749 0.746 0.832 0.759 0.758 0.838 0.754 0.751 0.860 0.778 0.776

FC 0.860 0.772 0.768 0.841 0.765 0.762 0.860 0.781 0.779 0.813 0.765 0.762

WDCR NZ ReHo 0.477 0.490 0.490 0.511 0.500 0.500 0.476 0.494 0.494 0.685 0.647 0.647

FC 0.466 0.488 0.496 0.607 0.500 0.500 0.417 0.454 0.455 0.685 0.661 0.654

ZAC ReHo 0.528 0.523 0.522 0.501 0.500 0.500 0.553 0.548 0.546 0.735 0.685 0.683

FC 0.467 0.482 0.483 0.611 0.500 0.500 0.409 0.444 0.446 0.677 0.578 0.577

ZBC ReHo 0.528 0.528 0.526 0.501 0.500 0.500 0.553 0.546 0.545 0.735 0.685 0.683

FC 0.456 0.476 0.478 0.611 0.500 0.500 0.407 0.444 0.445 0.677 0.578 0.577

CVCR NZ ReHo 0.552 0.522 0.519 0.511 0.500 0.500 0.569 0.553 0.553 0.685 0.647 0.647

FC 0.516 0.500 0.500 0.607 0.500 0.500 0.595 0.576 0.575 0.685 0.661 0.654

ZAC ReHo 0.632 0.589 0.585 0.577 0.611 0.518 0.668 0.637 0.634 0.694 0.666 0.665

FC 0.543 0.532 0.529 0.661 0.592 0.582 0.588 0.565 0.563 0.705 0.595 0.595

ZBC ReHo 0.634 0.591 0.587 0.577 0.611 0.518 0.669 0.635 0.633 0.703 0.666 0.665

FC 0.547 0.532 0.529 0.662 0.592 0.582 0.586 0.564 0.563 0.705 0.595 0.595

found that OOS performance was higher than the CV estimates for most of the
pipelines. This might happen if the OOS data is easier to classify. The OOS per-
formance was closer to the generalization performance estimated with CVCR.
This result suggests that CVCR is a better way to do confound removal in pre-
dictive analyses with neuroimaging data.

We then checked whether the confound removal was happening as expected.
First, in a univariate way we correlated the residuals (new features) with the
confounding variables. We found no significant correlation with both confound
removal schemes indicating e�ective univariate removal of the confounding signal
from the features. However, as multivariate e�ects might still be remaining, we
used multiple linear regression to predict brain size from the residual features.
With CVCR and WDCR, these models on the training sets revealed negative
adjusted r2. This indicates that there were no remaining linear multivariate
confounding e�ects with both WDCR and CVCR. Thus the models trained
with the residual features contained no information from the confounds.

These trends were similar for both ReHo and FC. Z-scoring improved the
model performance with ReHo but not with FC. There was no e�ect of Z-scoring
the features before (raw features) or after (residuals) confound removal.

5.2 Predictive Features

One of the main objectives of a decoding analysis is to identify predictive features
(brain regions) explaining the variance in phenotype. As the confounding e�ect
can impact predictive features selection, it is important to compare them with
and without confound removal. The Z-scored feature weights (the absolute value)
averaged across CV runs were used to select predictive features. We found that
predictive features with and without confound removal were di�erent (Fig. 3).
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Fig. 3. a. Pearson correlation between the raw features and the brain size as histograms.
The dots show the correlations of the selected features (jittered); 25 for ReHo (top)
and 70 for FC (bottom) for NCR-NZ, WDCR-ZAC and CVCR-ZAC pipelines. b. Brain
regions associated with the selected features; ReHo (top, relative weights), and FC
(bottom), both with the CVCR-ZAC pipeline.

We compared 25 ReHo and 70 FC features with highest absolute weights
from 3 pipelines, NCR-NZ, WDCR-ZAC and CVCR-ZAC (Fig. 3a). The features
selected without confound removal had relatively higher positive or negative cor-
relation with brain size. However, after confound removal (WDCR and CVCR),
for FC the features with lower correlation were selected. This suggests that the
features selected after confound removal represent the functional signal predic-
tive of sex. We then identified features selected after confound removal (CVCR-
ZAC)but not selectedwithout confound removal (NCR-NZ) (Fig. 3b).WithReHo,
selected regions were in dorsolateral prefrontal cortex, inferior parietal lobule,
occipital, ventromedial prefrontal cortex, precentral gyrus, post insula, parietal,
temporoparietal junction and inferior cerebellum, in line with a study identify-
ing regions in the inferior parietal lobule and precentral gyrus [43]. In contrast,
another study found sex di�erences in right hippocampus and amygdala [21]. We
found important FC features widespread across the entire brain with strong inter-
hemispheric connections. In contrast to the study by Zhang and colleagues [45] we
did not find many intra-network FC in the DMN. Z-score feature normalization
before or after confound removal did not a�ect selected features.

5.3 Out-of-Sample Performance

To study how a model deployment would work, especially in the presence of data
heterogeneity common in neuroimaging studies, we tested four di�erent ways
to remove confounds from the OOS data including, applying confound models
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from train to OOS data using CVCR-ZAC pipeline, self-confound removal on
the OOS data using WDCR and CVCR, and WDCR on the combined train and
OOS data. The Z-score normalization was performed after the confound removal
(ZAC) and PLS was used for prediction.

For sample-2, train-to-test confound removal showed best performance com-
pared to other three methods (Table 2). This is expected as the properties of
these two samples are expected to be similar (i.e., no data shift). Even though,
residual correlations were observed in the OOS data after applying confound
models from train data (Fig. 4a), the training models were confound-free so this
performance cannot be driven by confounding e�ects.

For sample-3 (data shift expected), we observed mixed results. For ReHo, the
combined WDCR model (learned on the train data) gave highest performance
(Table 2b). However, significant correlation was present between the residual
features and brain size in both train and OOS data (Fig. 4b). This might indicate
that the performance is driven by confounding e�ects. A similar model using FC
was lowest performing. With combined WDCR, it seems like the dataset with
higher variance dominates leaving the other part correlated, indicating it might
be suboptimal. Predictions on self-confound removed OOS data (sample-3) (Test
WDCR and Test CVCR) were similar to when the confound models from sample-
1 were applied (Table 2a). However, the OOS performance using ReHo dropped
compared to CV while that of FC improved.

Table 2. Comparison of confound removal schemes on out-of-sample/test data. a.
Confound models learned from the train data (sample-1) applied to test data (sample-
2 and 3), WDCR and CVCR performed only on test data. b. WDCR on the combined
train and test data.

a. Method Feat. CV: Sample-1 Test: Sample-2 Test: Sample-3

AUC F1 Acc. AUC F1 Acc. AUC F1 Acc.

Train-to test: ReHo 0.668 0.637 0.634 0.694 0.666 0.665 0.549 0.528 0.527

CVCR-ZAC FC 0.588 0.565 0.563 0.705 0.595 0.595 0.637 0.628 0.619

Test WDCR: ReHo 0.553 0.548 0.546 0.562 0.573 0.573 0.524 0.530 0.531

WDCR-ZAC FC 0.409 0.444 0.446 0.632 0.576 0.576 0.635 0.592 0.595

Test CVCR: ReHo 0.668 0.637 0.634 0.582 0.591 0.591 0.505 0.508 0.509

CVCR-ZAC FC 0.588 0.565 0.563 0.603 0.578 0.577 0.634 0.597 0.601

b. Feat. CV: Sample-1 Test: Sample-2 CV: Sample-1 Test: Sample-3

AUC F1 Acc. AUC F1 Acc. AUC F1 Acc. AUC F1 Acc.

ReHo 0.533 0.538 0.538 0.580 0.558 0.560 0.870 0.788 0.786 0.614 0.577 0.502

FC 0.450 0.459 0.461 0.387 0.409 0.412 0.871 0.779 0.777 0.541 0.502 0.501

Taken together, we found that train-to-test application of confound removal
models and self-confound removal to be better strategies but inconsistent across
feature spaces. This raises questions regarding optimal confound removal strate-
gies when data heterogeneity is present. Based on the results, we also speculate
that covariate and confound shift is more pronounced in ReHo compared to FC.
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Fig. 4. Correlation between the residual features and brain size: for out-of-sample/test
data when training confound removal models were applied (orange), and for train
(purple) and test (green) data when combined train and test WDCR was performed.
(Color figure online)

6 Conclusion

In this study, several confound removal pipelines were tested on the task of
rfMRI data based sex classification. As expected, the two confound removal
schemes (WDCR and CVCR) could e�ectively remove the signal corresponding
to confounds leading to a substantial drop in prediction performance compared
to without confound removal. Analyses on the residual features after WDCR
and CVCR revealed that there were no remaining univariate and multivariate
confounding e�ects. Thus, both these confound removed models should not have
confound-related information encoded. We found CVCR to be a better method
compared to WDCR as CVCR estimated generalization performance was closer
to OOS performance. As WDCR leads to data leakage, one might expect it to be
over-optimistic. However, our results point to the opposite. This is likely due to
the aggressive confound removal. Our findings provide further corroboration to
the idea of applying data analysis operations within the CV loop. In this work
we focused on the sex prediction problem and whether our results apply to other
problems remains to be seen.

The Z-score normalization of the features before or after confound removal
did not a�ect model performance. We recommend to normalize after confound
removal, as some learning algorithms might benefit from well-scaled features.
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We also found that the OOS performance was best when the confound models
from the train data were used, provided that the sample properties between train
and test are similar but results were inconsistent with data shift. Although we
used multiple regression to test for remaining multivariate confounding e�ects,
we are not aware of a method that can directly remove multivariate e�ects. This
calls for further investigations and development of new methods.
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a b s t r a c t 
The difference between age predicted using anatomical brain scans and chronological age, i.e., the brain-age 
delta, provides a proxy for atypical aging. Various data representations and machine learning (ML) algorithms 
have been used for brain-age estimation. However, how these choices compare on performance criteria important 
for real-world applications, such as; (1) within-dataset accuracy, (2) cross-dataset generalization, (3) test-retest 
reliability, and (4) longitudinal consistency, remains uncharacterized. We evaluated 128 workflows consisting of 
16 feature representations derived from gray matter (GM) images and eight ML algorithms with diverse inductive 
biases. Using four large neuroimaging databases covering the adult lifespan (total N = 2953, 18–88 years), we 
followed a systematic model selection procedure by sequentially applying stringent criteria. The 128 workflows 
showed a within-dataset mean absolute error (MAE) between 4.73–8.38 years, from which 32 broadly sampled 
workflows showed a cross-dataset MAE between 5.23–8.98 years. The test-retest reliability and longitudinal con- 
sistency of the top 10 workflows were comparable. The choice of feature representation and the ML algorithm 
both affected the performance. Specifically, voxel-wise feature spaces (smoothed and resampled), with and with- 
out principal components analysis, with non-linear and kernel-based ML algorithms performed well. Strikingly, 
the correlation of brain-age delta with behavioral measures disagreed between within-dataset and cross-dataset 
predictions. Application of the best-performing workflow on the ADNI sample showed a significantly higher brain- 
age delta in Alzheimer’s and mild cognitive impairment patients compared to healthy controls. However, in the 
presence of age bias, the delta estimates in the patients varied depending on the sample used for bias correction. 
Taken together, brain-age shows promise, but further evaluation and improvements are needed for its real-world 
application. 

1. Introduction 
Precision and preventive medicine, e.g., early detection of 

Alzheimer’s disease (AD), can benefit from individual-level quantifi- 
cation of atypical aging. Machine learning (ML) approaches, together 
with large neuroimaging datasets can provide such individualized pre- 
dictions. Indeed, ML algorithms can capture the multivariate pattern of 
age-related changes in the brain associated with healthy or typical aging 
( Franke et al., 2010 ; Varikuti et al., 2018 ; Cole 2020 ; Beheshti et al., 
2022 ; Hahn et al., 2022 ). Such a model can then be used to predict 
age, i.e., brain-age, from an unseen subject’s image. Being a normative 
model, a large deviation between the chronological and the predicted 

✩ Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database ( adni.loni.usc.edu ). As such, the 
investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this 
report. A complete listing of ADNI investigators can be found at: https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf . 

< Corresponding author at: Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany. 
E-mail address: k.patil@fz-juelich.de (K.R. Patil) . 

age is indicative of atypical aging. A higher positive difference between 
the brain-age and chronological age, i.e., brain-age delta (which we refer 
to simply as delta), indicates “older-appearing ” brains. As an indicator 
of future risk of experiencing age-associated health issues, delta quan- 
titatively relates to several age-related risk factors and general physi- 
cal health, such as weaker grip strength, poorer lung function, history 
of stroke, greater frequency of alcohol intake, increased mortality risk 
( Cole et al., 2018 ; Cole, 2020 ), and poorer cognitive functions such as 
fluid intelligence, processing speed, semantic verbal fluency, visual at- 
tention, and cognitive flexibility ( Cole et al., 2018 ; Boyle et al., 2021 ; 
Richard et al., 2018 ; Gaser et al., 2013 ; Cole et al., 2017 ). Overall, the 
delta can potentially serve as an omnibus biomarker of brain integrity 
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and health if its reliability, given different ML workflow designs and 
other analyses, can be established. 

Studies have shown global and local gray matter (GM) volume 
(GMV) loss ( Good et al., 2001 ; Galluzzi et al., 2008 ; Giorgio et al., 
2010 ) with aging and accelerated loss in neurodegenerative disorders 
( Good et al., 2001 ; Karas et al., 2004 ; Fjell et al., 2014 ). This makes GMV 
a clinically relevant candidate for the investigation of atypical aging via 
brain-age estimation ( Franke et al., 2010 ; Cole et al., 2015 ). Brain-age 
prediction models tend to perform better using GMV than white matter 
volume (WMV) ( Cole et al., 2017 ; Monté-Rubio et al., 2018 ), making 
GMV a promising candidate for further investigation. Furthermore, by 
reducing the methodological and data-related variance in a model’s pre- 
diction error, the delta can better reflect a biological signal related to 
atypical aging. 

A brain-age estimation workflow consists of a feature space and an 
ML algorithm, and several choices exist for each. For instance, voxel- 
wise data with additional smoothing and/or resampling or parcel-wise 
averages within a brain atlas can be used as features ( Varikuti et al., 
2018 ; Eickhoff et al., 2021 ). Further dimensionality reduction meth- 
ods such as principal components analysis (PCA) can improve the 
observations-to-features ratio and signal-to-noise ratio ( Franke et al., 
2010 ; Franke et al., 2013 ; Gaser et al., 2013 ). One also needs to choose 
from a large pool of ML algorithms, such as relevance vector regres- 
sion (RVR), and Gaussian process regression (GPR), many of which have 
shown success in brain-age estimation. These choices are known to af- 
fect performance ( Gutierrez Becker et al., 2018 ; Baecker et al., 2021 ; 
de Lange et al., 2022 ). 

Studies using voxel-based morphometry (VBM)-derived GMV to pre- 
dict brain-age have claimed prediction errors of Ì5–8 years in healthy 
individuals (Table S1). However, it is difficult to compare these stud- 
ies as they differ in experimental setup and methodology, such as fea- 
ture space used, ML algorithms, age range, and evaluation criteria. For 
a brain-age estimation model to be used in real-world applications, it 
must perform well on several evaluation criteria; (1) a model should 
generalize well on new data from the training site as well as on data 
from novel sites, (2) estimated age must be reliable on repeated mea- 
surements, and (3) it should also exhibit longitudinal consistency, i.e., 
the predicted age should be proportionally higher for later scans after 
a longer duration, assuming no significant change in lifestyle or health- 
related interventions between the measurements. 

A critical aspect, especially for clinical application, is the com- 
monly reported negative correlation between delta and true age 
( Beheshti et al., 2019 ; Smith et al., 2019 ; de Lange and Cole, 2020 ). This 
may result in spurious correlations between the delta and non-imaging 
measures when chronological age is not accounted for ( Franke et al., 
2013 ; Löwe et al., 2016 ). This age bias complicates or may even mislead 
downstream individualized decision-making. It can be mitigated using 
bias correction models; usually, linear regression predicting brain-age 
or delta using chronological age ( Le et al., 2018 ; Liang et al., 2019 ; 
Smith et al., 2019 ; de Lange et al., 2022 ). The data source (within or 
cross-data) and size used to obtain bias correction models has substan- 
tial impact on quality of the model. Taken together, there is a gap in 
understanding the impact of the choices in designing brain-age work- 
flows, and how they affect estimation and utility of individual-level 
delta. 

To fill this gap, we systematically assessed 128 workflows consist- 
ing of 16 feature spaces derived from GM images and eight ML algo- 
rithms with diverse inductive biases. Using several large neuroimaging 
databases with a wide age range, we first evaluated these workflows 
for their within-dataset and cross-dataset performances. Next, we eval- 
uated the test-retest reliability and longitudinal consistency of some 
top-performing workflows. Then, we assessed the performance of our 
best-performing workflow in a clinical sample. We investigated the cor- 
relations between delta and behavioral/cognitive measures in healthy 
and clinical cohorts and various factors affecting these correlations. We 
also compared our best-performing workflow with a publicly available 

model, brainageR. Several follow-up analyses were performed to inves- 
tigate the effect of preprocessing (CAT vs. SPM) and tissue type (GM 
vs. GM + WM + CSF) choices on prediction performance. Finally, given 
recent evidence that lower accuracy models may capture atypical ag- 
ing better ( Bashyam et al., 2020 ), we investigated relationship of model 
performance with delta and delta-behavior correlations. 
2. Material and methods 
2.1. Datasets 
2.1.1. MRI data 

We used T1-weighted (T1w) magnetic resonance imaging (MRI) 
data from healthy subjects covering a wide age range (18–88 years, 
training data) from several large neuroimaging datasets ( Table 1 ), 
including the Cambridge center for Ageing and Neuroscience (Cam- 
CAN, N = 651) ( Taylor et al., 2017 ), Information eXtraction from Im- 
ages (IXI, N = 562) ( https://brain-development.org/ixi-dataset/ ), the 
enhanced Nathan Kline Institute-Rockland Sample (eNKI, N = 597) 
( Nooner et al., 2012 ), the 1000 brains study (1000BRAINS; N = 1143) 
( Caspers et al., 2014 ), Consortium for Reliability and Reproducibility 
(CoRR) ( Zuo et al., 2014 ), the Open Access Series of Imaging Studies 
(OASIS-3) ( LaMontagne et al., 2019 ), and the MyConnectome dataset 
( Poldrack et al., 2015 ). The inclusion criteria were age between 18 and 
90 years, gender data available, and no current or past known diag- 
nosis of neurological, psychiatric, or major medical conditions. The IXI 
dataset was acquired from multiple sites; however, we treat it as a sin- 
gle dataset representing typical data acquired in a noisy clinical setting. 
From the OASIS-3 dataset, we selected scans from healthy control sub- 
jects acquired on 3T scanners. Some other datasets used by brainageR 
were also used for a fair comparison with our best workflow. The cor- 
responding details are provided in the Supplementary Table S8. 

We used the Alzheimer’s Disease Neuroimaging Initiative (ADNI; 
https://adni.loni.usc.edu/ ) database to evaluate the utility of brain-age 
in neurodegenerative disorders ( Jack et al., 2008 ; Petersen et al., 2010 ). 
We included 3T T1w images from healthy control (HC, N = 209), early 
and late mild cognitively impaired (EMCI, N = 237; LMCI, N = 128), 
and Alzheimer’s disease (AD, N = 125) subjects. For some of these sub- 
jects, data were available for the second timepoint 1–2 years apart (HC, 
N = 153; EMCI, N = 197; LMCI, N = 104; AD, N = 61) ( Table 1 d). 
2.1.2. Non-imaging data 

We used various behavioral/cognitive measures to compute their 
correlations with delta. Fluid intelligence (FI; N = 631) assessed by the 
Cattell Culture Fair test and reaction time for the motor learning task 
( N = 302) from the CamCAN dataset ( Taylor et al., 2017 ). From the 
eNKI dataset, we used the Color-Word Interference Test (CWIT) inhi- 
bition trial completion time ( N = 340), the Trail Making Test (TMT) 
number-letter switching condition completion time ( N = 344), Wech- 
sler Abbreviated Scale of Intelligence (WASI-II) matrix reasoning scores 
( N = 347), and WASI-II similarities scores ( N = 347) ( Nooner et al., 
2012 ). 

Three cognitive tests from ADNI measuring disease severity were 
used; Mini-Mental State Examination (MMSE), Global Clinical Dementia 
Rating Scale (CDR), and Functional Assessment Questionnaire (FAQ). 

All the datasets except the 1000BRAINS data are available publicly. 
Ethical approval and informed consent were obtained locally for each 
study covering both participation and subsequent data sharing. The 
ethics proposals for the use and retrospective analyses of the datasets 
were approved by the Ethics Committee of the Medical Faculty at the 
Heinrich-Heine-University Düsseldorf. 
2.2. Data preparation 

For the main analysis all T1w images were preprocessed 
using the Computational Anatomy Toolbox (CAT) version 12.8 
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Table 1 
Sample characteristics of the datasets used in the current study. Datasets used a. for training within-dataset models. b. for training cross-dataset 
models. c. to evaluate test-retest reliability and longitudinal consistency of brain-age delta and comparison with brainageR (note: for CoRR 
full sample, the demographics are reported for the last iteration). d. to evaluate performance in clinical samples. Abbreviations: CamCAN: 
the Cambridge center for ageing and Neuroscience, IXI: Information eXtraction from Images (includes 1.5 and 3T scans), eNKI: the enhanced 
Nathan Kline Institute-Rockland Sample, CoRR: Consortium for Reliability and Reproducibility, OASIS-3: the Open Access Series of Imaging 
Studies, ADNI: the Alzheimer’s Disease Neuroimaging Initiative, HC: healthy control, EMCI and LMCI: early and late mild cognitively impaired, 
AD: Alzheimer’s disease. 
a. 
Train dataset No. of subjects (N) Males/Females Age range Mean ± S . D. Median 
CamCAN 651 321/330 18 - 88 54.27 ± 18.58 54.50 
IXI 562 249/313 20 - 86 48.70 ± 16.44 48.85 
eNKI 597 188/409 18 - 85 48.25 ± 18.51 50.00 
1000BRAINS 1143 660/513 22 - 85 61.85 ± 12.39 63.60 
b. 
Train dataset Train N Test dataset Test N 
IXI + eNKI + 1000BRAINS 2302 CamCAN 651 
CamCAN + eNKI + 1000BRAINS 2391 IXI 562 
IXI + CamCAN + 1000BRAINS 2356 eNKI 597 
IXI + CamCAN + eNKI 1810 1000BRAINS 1143 
IXI + CamCAN + eNKI + 1000BRAINS 2953 CoRR, OASIS-3, MyConnectome, ADNI See below (c & d) 
c. 
Dataset Data Filtering N (sessions) Males/Females Age Range Mean ± S . D. Median 
CoRR Retest < 3 months 86 (2) 39/47 20.0 - 84.0 48.82 ± 18.28 49.00 

Retest 1 – 2 years 95 (2) 52/43 18.0 - 88.0 34.43 ± 22.51 20.00 
Retest 2 – 3.25 years 26 (2) 18/8 18.0 - 57.0 28.09 ± 11.89 24.50 
Full sample 107 51/56 18.0 – 88.0 49.99 ± 18.87 50.00 

OASIS-3 Retest < 3 months 36 (2) 21/15 42.66 - 80.90 63.46 ± 8.80 62.93 
Retest 3- 4 years 127 (2) 52/75 46.04 - 86.21 65.59 ± 8.39 65.90 
Full sample 806 338/468 43.00 - 89.00 69.07 ± 9.06 69.00 

MyConnectome Retest < 3 years 1 (20) 1/0 45.39 - 48.02 45.73 ± 0.58 45.56 
d. 
Dataset Disease N Males/Females Age Range Mean ± S . D. Median 
ADNI (Timepoint-1) HC 209 99/110 56.3 - 94.7 75.67 ± 6.94 75.50 

EMCI 237 128/109 55.7 - 88.7 70.88 ± 7.12 70.40 
LMCI 128 62/65 55.1 - 91.5 72.02 ± 7.89 72.55 
AD 125 65/60 56.0 - 91.0 74.68 ± 7.99 75.40 

ADNI (Timepoint-2) HC 153 70/83 57.3 - 95.8 75.89 ± 6.63 75.50 
EMCI 197 108/89 56.7 - 90.4 71.81 ± 7.04 71.10 
LMCI 104 51/53 56.1 - 92.5 73.36 ± 7.92 73.95 
AD 61 32/29 57.0 - 93.0 75.79 ± 7.83 76.80 

( Gaser et al., 2022 ). To ensure accurate normalization and seg- 
mentation, initial affine registration of T1w images was done with 
higher than default accuracy (accstr = 0.8). After bias field correction 
and tissue class segmentation, accurate optimized Geodesic shooting 
( Ashburner and Friston, 2011 ) was used for normalization (regstr = 1). 
We used 1 mm Geodesic Shooting templates and outputted 1 mm 
isotropic images. The normalized GM segments were then modulated 
for linear and non-linear transformations. 

For comparison with the brainageR model, we used the seven 
datasets used by brainageR (Table S8) and preprocessed them using 
CAT 12.8 (Section 2.9). To evaluate the effect of preprocessing and tis- 
sue types, we used the SPM12 based preprocessing as implemented by 
brainageR , which outputs three tissue segmentations (GM, WM, and 
CSF; see https://github.com/james-cole/brainageR/ ). 
2.3. Workflows 

Each workflow consists of a feature representation and an ML algo- 
rithm. We evaluated 128 workflows constituting 16 feature representa- 
tions and eight ML algorithms. 

2.3.1. Feature representations 
The 16 feature representations were derived from the CAT- 

preprocessed voxel-wise GM images. Using voxel-wise data can lead to 
overfitting due to the curse of dimensionality owing to a large number 
of features compared to the number of samples. Hence, we implemented 
two dimensionality reduction approaches previously used for brain-age 
prediction. 

In the first strategy, we used voxel-wise GMV after smoothing and 
resampling ( Franke et al., 2010 ), which may also improve the signal-to- 
noise ratio. In the second strategy, we used an atlas to summarize data 
from distinct brain regions (called parcels). This resulted in 16 feature 
representations. 
1. SX_RY: A whole-brain mask was used to select 238,955 voxels. Then, 

smoothing (S) with an X mm FWHM Gaussian kernel and resam- 
pling (R) using linear interpolation to Y mm spatial resolution were 
applied with X = {0, 4, 8} and Y = {4, 8}, resulting in six feature 
spaces (S0_R4, S0_R8, S4_R4, S4_R8, S8_R4, S8_R8; SX_R4: 29,852 
voxels and SX_R8: 3747 voxels). 

2. SX_RY + PCA: Additionally, PCA ( Jolliffe, 2002 ) was applied to each 
SX_RY feature space while retaining 100% variance, creating an- 
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Fig. 1. The framework to select the best-performing workflow for 
brain-age prediction. A total of 128 workflows were first evaluated 
for their within-dataset prediction performance using five-fold cross- 
validation (CV). Next, 32 workflows were selected based on the CV 
mean absolute error (MAE) and assessed for cross-dataset prediction 
performance. Within-dataset and cross-dataset evaluations were per- 
formed using four datasets (CamCAN, IXI, eNKI and 1000BRAINS). 
Then, 10 workflows out of 32 were selected based on their test MAE 
and assessed for test-retest reliability and longitudinal consistency us- 
ing OASIS-3 and CoRR datasets. The best-performing workflow was 
selected after considering all the evaluation criteria. 

other six representations (S0_R4 + PCA, S0_R8 + PCA, S4_R4 + PCA, 
S4_R8 + PCA, S8_R4 + PCA, S8_R8 + PCA). 

3. Parcel-wise: Four parcel-wise feature spaces were created by com- 
bining cortical {100, 400, 800, 1200} parcels ( Schaefer et al., 
2018 ) with 36 subcortical ( Fan et al., 2016 ) and 37 cerebellum 
( Buckner et al., 2011 ) parcels. We calculated the mean GMV of all 
the voxels within each parcel (173, 473, 873, and 1273 features). 

2.3.2. Machine learning algorithms 
We included eight ML algorithms covering diverse inductive biases: 

ridge regression (RR), least absolute shrinkage and selection operator 
(LASSO) regression (LR), elastic net regression (ENR), kernel ridge re- 
gression (KRR), random forest regression (RFR), GPR, RVR with the 
linear kernel (RVRlin), and polynomial kernel of degree 1 (RVRpoly). 
These algorithms have been previously used in the prediction of age and 
other behavior variables from neuroimaging data ( Franke et al., 2010 ; 
Gaser et al., 2013 ; Su et al., 2013 ; Cole et al., 2015 ; Varikuti et al., 2018 ; 
Jonsson et al., 2019 ; Liang et al., 2019 ; Zhao et al., 2019 ; He et al., 2020 ; 
Baecker et al., 2021 ; Boyle et al., 2021 ; Lee et al., 2021 ; Peng et al., 
2021 ; Treder et al., 2021 ; Vidal-Pineiro et al., 2021 ; Beheshti et al., 
2022 ; Cole, 2020 ) (Table S1). Details of these algorithms are provided 
in the Supplementary Methods. 

Recently, deep-learning (DL) models have been applied for brain- 
age estimation with success ( Jiang et al., 2019 ; Jonsson et al., 2019 ; 
Peng et al., 2021 ). However, in this work, we focus on conventional 
ML models for the following reasons: (1) ML models have shown com- 
petitive performance to DL models ( Cole et al., 2017 ; He et al., 2020 ; 
Schulz et al., 2020 ; Grinsztajn et al., 2022 ), and (2) the resources re- 
quired for ML are more readily available and thus still enjoy wider ap- 
plicability with a lower computational footprint ( Thompson et al., 2020 ; 
van Wynsberghe, 2021 ). 
2.3.3. Learning setup and software 

The ML algorithm’s hyperparameters were estimated in a nested 
fashion using an inner cross-validation (CV) ( Varoquaux et al., 2017 ). 
Before training, features with low variance were removed (threshold < 
1e-5), and the remaining features were Z-scored to have zero mean and 
unit variance. Any preprocessing steps, including PCA, were applied in 
a CV-consistent fashion to avoid data leakage, i.e., the parameters were 
estimated on the training set and applied to both the training and the 
test set ( More et al., 2021 ). 

All the workflows were implemented in Python version 3.9.1 
using the Julearn machine-learning library ( https://juaml.github.io/ 
julearn/ ), which in turn uses the scikit-learn library for the learning al- 
gorithms KRR, GPR, and RFR ( http://scikit-learn.org/ ) ( Pedregosa et al., 
2011 ). LR, RR, and ENR were implemented using the Python wrapper 
for glmnet ( https://pypi.org/project/glmnet/ ) ( Friedman et al., 2010 ). 
RVRlin and RVRpoly were implemented using the scikit-rvm package 
( https://github.com/JamesRitchie/scikit-rvm/ ). The codes used for pre- 
processing, feature extraction, model training and prediction are avail- 
able at https://github.com/juaml/brainage _ estimation . 
2.4. Analysis setup 

Given data acquisition and site-related biases, it is important to iden- 
tify a workflow that shows high accuracy in different evaluation scenar- 
ios. For instance, a workflow that works well on a dataset might not 
work well on another dataset. To accommodate such real-world scenar- 
ios, we followed a systematic procedure where the workflows were sub- 
jected to increasingly stringent evaluations ( Fig. 1 ). In brief, we first 
evaluated the within-dataset CV performance of the 128 workflows. 
Next, 32 workflows characterizing the overall pattern of performance 
were selected for cross-dataset evaluation. This selection was performed 
by uniformly sampling over the within-dataset CV performance. This al- 
lows for the possibility that workflows with low within-dataset perfor- 
mance might perform well in cross-dataset evaluation. Finally, the top 
10 workflows out of the 32 were evaluated for their test-retest reliability 
and longitudinal consistency. After considering all the evaluation crite- 
ria, the best-performing workflow was chosen and used for application 
on ADNI data and comparison with brainageR. Specific analysis steps 
are described below. 
2.4.1. Within-dataset and cross-dataset evaluations 

We evaluated the 128 workflows (see Section 2.3 ) separately on four 
datasets, CamCAN, IXI, eNKI, and 1000BRAINS. This scenario assumes 
that enough within-dataset training data are available and is widely 
used in brain-age estimation work ( Ashburner, 2007 ; Su et al., 2013 ; 
Gutierrez Becker et al., 2018 ). To estimate a single out-of-sample brain- 
age for each subject, we used a 5-fold CV. For each hold-out (test) fold, 
the remaining 80% of the data were used for training and to obtain a 
generalization estimate using 5 times repeated 5-fold (5 ù 5-fold) nested 
CV. All CV analysis was stratified by age to preserve the age distribution. 
It is important to obtain a single prediction per subject (as opposed to 
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multiple predictions per subject if the outer CV were repeated) for fur- 
ther meaningful analyses, such as correlation with non-imaging mea- 
sures. Consequently, we computed two measures, test performance, and 
CV performance. The test performance was obtained by averaging over 
the outer 5 folds. The CV performance was obtained by first averaging 
over the inner 5 ù 5-fold CV and then over the outer 5-fold CV. Finally, 
the CV and test performance were averaged over the four datasets. The 
performance was evaluated using mean absolute error (MAE), Pearson’s 
correlation between predicted and true (chronological) age, and the co- 
efficient of determination R 2 . 

We followed a systematic procedure to select a subset of workflows 
while maintaining diversity in terms of CV performance. Specifically, 
the workflows were arranged in the increasing order of their average 
CV MAE and divided into 16 groups. Next, the top two workflows (with 
the lowest CV MAE) from each group were selected. 

We tested these 32 selected workflows on cross-dataset to obtain 
sample-unbiased performance. This emulates the real-world scenario 
where data from the application site are not available, and the train- 
ing and test data come from different sources with confounding effects, 
such as scanner hardware or operator inconsistencies ( Jovicich et al., 
2006 ; Chen et al., 2014 ). Three out of four datasets (CamCAN, IXI, eNKI 
and 1000BRAINS) were pooled to form the training data, and the hold- 
out dataset was used as the test data. A 5 ù 5-fold CV was performed 
on the training data to estimate the generalization performance with 
an internal CV for hyperparameter tuning. The CV performance was av- 
eraged over 5 ù 5-fold CV and then over the four hold-out datasets. 
The test performance was averaged over the four datasets. The perfor- 
mance was again evaluated using MAE, Pearson’s correlation between 
predicted and true age, and the coefficient of determination R 2 . 

The 32 workflows were arranged in increasing order of their average 
test MAE, i.e., their average performance on the hold-out datasets, from 
which the top 10 workflows were selected. 
2.4.2. Test-retest reliability and longitudinal consistency 

We then trained models using the 10 selected workflows with 
the four datasets combined as training data (IXI + eNKI + Cam- 
CAN + 1000BRAINS, N = 2953; Supplementary Fig. S1). The test-retest 
reliability and longitudinal consistency of the delta were evaluated for 
the 10 models using the OASIS-3 and CoRR datasets. 

To evaluate test-retest reliability, we used: two scans from the same 
subjects acquired within a delay of (1) less than three months (CoRR: 
N = 86, age range = 20–84 years, OASIS-3: N = 36, age range = 43–
81), and (2) between 1 and 2 years (CoRR: N = 95, age range = 18–88). 
The concordance correlation coefficient (CCC) ( Lin, 1989 ) between the 
delta (predicted age minus age at the scan time) from the two scans was 
calculated. 

To evaluate longitudinal consistency, two scans from the same sub- 
jects acquired with a retest duration (1) between 2 and 3.25 years 
(CoRR: N = 26, age range = 18–57), and (2) between 3 and 4 years 
(OASIS-3: N = 127, age range = 46–86) were used. We computed Pear- 
son’s correlation between the difference in the predicted age and the 
difference in chronological age from the two scans. A higher positive 
correlation here would indicate higher longitudinal consistency. 

By considering the results from the within- and cross-dataset anal- 
ysis, test-retest reliability, and longitudinal consistency, we chose one 
best-performing workflow for further analysis. 
2.5. Bias correction 

Many studies have reported age-dependency of the delta with over- 
prediction in young subjects and under-prediction in older subjects 
( Le et al., 2018 ; Liang et al., 2019 ), which renders the usage of delta 
as an individualized biomarker problematic. A common practice is to 
apply a statistical bias correction to remove the effect of age from ei- 
ther the predicted age or the delta ( Le et al., 2018 ; Liang et al., 2019 ; 
Smith et al., 2019 ; Cole, 2020 ; de Lange and Cole, 2020 ). Note that 

when calculating correlations of delta with non-imaging measures, bias 
correction is expected to be similar to partial correlation analysis when 
age is used as a covariate. 

Several alternatives are available for bias correction ( de Lange 
et al., 2019 ; Cole, 2020 ; de Lange and Cole, 2020 ; Smith et al., 
2019 ( Beheshti et al., 2019 )). We chose the method used by Cole and col- 
leagues ( Cole, 2020 ) as it does not use the chronological age of the test 
data, and thus avoids information leakage which can bias comparison 
between workflows by making low-performing workflows appear good 
( de Lange et al., 2022 ). Furthermore, this method is relevant for possi- 
ble future applications like forensic investigations where test age is not 
available. A linear regression model was fitted with the out-of-sample 
(from the CV) predicted age as the dependent variable and chronological 
age as the independent variable using the training data. The predicted 
age in the test set was corrected by subtracting the resulting intercept 
and dividing by the slope. 
2.6. Correlation with cognitive measures 

To understand the effect of bias correction and the impact of co- 
variates on delta-behavior correlations, we performed correlations of 
behavior/cognitive measures from CamCAN and eNKI datasets (see 
Section 2.1.2 ) with (1) uncorrected delta, (2) uncorrected delta with 
age as a covariate, (3) corrected delta, and (4) corrected delta with age 
as a covariate. If the bias correction eliminates the antagonistic relation 
between delta and age, we expect (2), (3), and (4) to give similar corre- 
lations. Furthermore, to assess the impact of data used for learning bias 
correction models, we performed these analyses using delta obtained 
from within-dataset and cross-dataset predictions. 
2.7. Brain-age in clinical samples 

Next, we used the ADNI dataset ( Jack et al., 2008 ; Petersen et al., 
2010 ) to validate our best-performing workflow on clinical samples. We 
estimated and compared the delta between HC, EMCI, LMCI, and AD 
subjects ( Table 1 d). 

Our best-performing workflow trained on the four datasets was used 
to obtain the predictions, followed by application of bias correction 
model (see Section 2.5 ). We compared two bias correction models, one 
derived using the CV predictions from the four training datasets and an- 
other using HC samples in ADNI data ( Franke and Gaser, 2012 ). The 
group-wise corrected delta was compared using analysis of variance 
(ANOVA) followed by Bonferroni correction to counteract multiple com- 
parisons. Emulating the scenario that application sites might have differ- 
ent numbers of HC samples, we learned bias correction models using HC 
sub-samples (0.1 to 0.9 fraction in steps of 0.1) drawn without replace- 
ment and applied them on the full HC and AD samples. This process was 
repeated 100 times to estimate the variance of mean corrected delta in 
HC and AD subjects. 

Finally, we investigated associations between the corrected delta and 
three clinical test scores, MMSE, CDR, and FAQ. The correlations were 
computed using the whole sample and different diagnostic groups sep- 
arately using Pearson’s correlation with age as a covariate for both ses- 
sions separately. 
2.8. Relationship of MAE with delta and delta-behavior correlations 

Here, we sought to select a workflow that provides accurate and re- 
liable predictions. We reason that a workflow that accurately predicts 
the age of healthy individuals captures the typical brain aging process, 
and thus, a large delta in new data can be considered indicative of atyp- 
ical aging. However, recent evidence shows that an overfitted brain- 
age model (high training accuracy) is not the most sensitive in iden- 
tifying pathologies ( Bashyam et al., 2020 ). This study showed that a 
relatively moderately fit model yielded brain-age deltas with more sig- 
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Fig. 2. Within-dataset and cross-dataset results. a. The line plot showing CV MAE (averaged across four datasets) for 128 workflows arranged in increasing order 
(names of all workflows are given in Table S2). The orange bars represent the MAEs of 32 selected workflows with their names in the table on left. b. The scatter plot 
between the chronological age and within-dataset predicted age for the CamCAN data using S4_R4 + GPR workflow (MAE = 4.94 years and r = 0.94, p = 6.4e-309). 
c. The line plot showing test MAE (averaged across four runs) for the 32 workflows arranged in increasing order (names of all workflows are given in Table S3). The 
purple bars represent the MAEs of 10 selected workflows with their names in the table on the bottom right. d. The scatter plot between the chronological age and 
cross-dataset predicted age for the CamCAN data using S4_R4 + PCA + GPR workflow (MAE = 4.75 years and r = 0.95, p = 0.0e + 00). 
nificant group differences and the larger effect sizes between control 
and disease groups in various brain pathologies. 

To investigate this possibility, we trained the 32 workflows selected 
from the cross-dataset analysis with four datasets pooled together for 
training and applied to timepoint 2 ADNI data. To understand how 
the model performance varies with its utility, we compared the mod- 
els’ MAEs with the corrected mean delta in AD sample and examined 
whether it was related to the delta-behavior correlations. We then per- 
formed a similar analysis in two HC samples (CamCAN and eNKI) using 
corresponding within-dataset hold-out predictions. 
2.9. Comparison with brainageR and effect of preprocessing and tissue 
types 

We compared the performance of our best-performing workflow 
with an already available brain-age estimation model, brainageR. The 
brainageR model was trained on 3377 healthy individuals (age range = 
18–92 years, mean ± SD age = 40.6 ± 21.4 years) from seven publicly 
available datasets using the GPR algorithm. It uses SPM12 to segment 
and normalize T1w images, from which GM, WM, and CSF vectors were 
extracted (using 0.3 probability masked brainageR-specific templates). 
PCA was used to reduce data dimensionality, and 435 components ex- 
plaining 80% of the variance were retained. Note that brainageR uses 
three tissue types, while our focus is on GM. 

To avoid bias due to different training data, for this comparison we 
used data from the same subjects used by brainageR (2 subjects could 
not be processed; Table S8). Next, using this training data, we trained 
our best-performing workflow using GMV extracted from CAT 12.8 and 
compared the performance with already trained brainageR model on 
three datasets, (1) CoRR ( N = 107, sub-sampled to keep uniform dis- 

tribution in age-range = 18–88 years, repeated 100 times; see Supple- 
mentary Methods for more details), (2) the OASIS-3 ( N = 806; first scan 
per subject, age-range = 43–89 years), and (3) the MyConnectome study 
(one subject scanned 20 times in a period of 3 years; age range = 45–
48 years). Additionally, we used sub-samples from OASIS-3 with test- 
retest durations of (1) less than 3 months ( N = 36, 43–81 years) and 
(2) between 3 and 4 years ( N = 127, 46–86 years) to evaluate test-retest 
reliability and longitudinal consistency, respectively (see Section 2.4.2 ). 

Next, we compared how the preprocessing and tissue types af- 
fect model performance. Following our focus on GMV, we compared; 
(1) CAT-preprocessed GMV, (2) SPM-preprocessed GMV, and (3) SPM- 
preprocessed GM, WM, and CSF images following brainageR. The latter 
investigates whether WM and CSF features provide complementary in- 
formation leading to better predictions. For this, we performed within- 
dataset evaluation on IXI and CamCAN datasets (see Section 2.4.1 ). 
3. Results 
3.1. Within-dataset and cross-dataset predictions 

For within-dataset analysis, the CV performance (average over 125 
estimates–inner 5 ù 5-fold CV, repeated 5 times, see Section 2.4.1 ) and 
test performance based on single prediction per subject from the outer 
CV, were calculated. These were then averaged separately over four 
datasets. 

The average CV MAE (4.90–8.48 years) and the average test MAE 
(4.73–8.38 years) ( Fig. 2 a, Table S2) were similar, indicating that the 
nested CV generalization estimates are indeed indicative of their test 
performance. The correlation between the true and predicted age on 
the test data ranged from 0.81 to 0.93, while the age bias (correlation 
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Table 2 
The performance metric for the best workflow on different datasets. A. Within-dataset prediction (using S4_R4 + GPR) b. Cross-dataset prediction (using 
S4_R4 + PCA + GPR). Abbreviations: MAE: mean absolute error between true and predicted age, MSE: mean squared error between true and predicted age, R 2 : the 
proportion of variance of predicted age explained by the independent variables in the model, Corr (true, pred): Pearson’s correlation between true and predicted 
age, Age bias: Pearson’s correlation between true age and brain-age delta. 
Datasets N a. Within-dataset results b. Cross-dataset results 

MAE MSE R 2 Corr (true, pred) Age bias MAE MSE R 2 Corr (true, pred) Age bias 
CamCAN 651 4.94 39.54 0.89 r = 0.94, p = 6.4e-309 r = * 0.42, p = 6.8e-29 4.75 38.35 0.89 r = 0.95, p = 0.0e + 00 r = * 0.23, p = 3.1e-09 
IXI 562 4.76 35.20 0.87 r = 0.93, p = 2.9e-252 r = * 0.48, p = 3.5e-33 6.08 57.35 0.79 r = 0.94, p = 1.2e-267 r = * 0.18, p = 2.2e-05 
eNKI 597 5.20 44.85 0.87 r = 0.93, p = 8.1e-267 r = * 0.47, p = 1.4e-33 4.97 39.65 0.88 r = 0.94, p = 9.7e-288 r = * 0.49, p = 3.6e-38 
1000- BRAINS 1143 4.04 26.65 0.83 r = 0.91, p = 0.0e + 00 r = * 0.50, p = 2.0e-73 5.13 41.03 0.73 r = 0.90, p = 0.0e + 00 r = * 0.15, p = 2.0e-07 

Table 3 
Concordance correlation coefficient (CCC) between brain-age delta from two sessions at different test-retest durations and their respective mean 
absolute error (MAE) between true and predicted age for CoRR and OASIS-3 datasets for the top 10 workflows. 

CoRR dataset OASIS-3 dataset 
Retest duration Age range (years) < 3 months ( N = 86; 20.0 - 84.0) 1 – 2 years ( N = 95; 18.0 - 88.0) < 3 months ( N = 36; 42.66 - 80.90) 
Workflows MAE (ses-1) MAE (ses-2) CCC MAE (ses-1) MAE (ses-2) CCC MAE (ses-1) MAE (ses-2) CCC 
S4_R4 + PCA + GPR 4.808 5.008 0.97 4.374 4.204 0.95 4.2 3.801 0.80 
S4_R4 + GPR 4.928 5.112 0.97 4.738 4.49 0.96 4.24 3.935 0.82 
S4_R4 + PCA + RVRlin 5.811 5.757 0.97 5.156 5.072 0.96 5.288 5.223 0.83 
S4_R4 + RVRlin 5.815 5.76 0.97 5.141 5.065 0.96 5.234 5.177 0.83 
S4_R8 + RVRlin 6.375 6.265 0.95 5.444 5.33 0.96 5.109 5.2 0.77 
S4_R4 + RR 5.64 5.653 0.98 5.174 5.277 0.97 4.918 4.71 0.85 
S4_R4 + PCA + RR 5.742 5.732 0.98 5.288 5.404 0.97 4.988 4.744 0.85 
S0_R4 + LR 6.281 6.359 0.96 6.251 6.293 0.94 4.949 5.161 0.86 
S4_R8 + LR 6.763 6.676 0.97 6.497 6.434 0.97 5.811 5.896 0.79 
S4_R8 + RR 6.232 6.185 0.97 5.975 6.016 0.97 5.332 5.328 0.81 

between true age and delta) ranged from * 0.22 to * 0.83 (Table S2). 
Overall, all workflows showed a high similarity in their predictions (cor- 
relations 0.83–0.99 averaged across the four datasets; Fig. S2). The top 
20 workflows showed comparable CV and test MAE with a difference of 
less than 0.4 years. 

Well-performing workflows primarily consisted of voxel-wise 
smoothed and resampled feature spaces with and without PCA, with 
S4_R4 (smoothed with a 4 mm FWHM kernel and resampled to 4 mm 
spatial resolution) generally performing better. Some workflows with 
PCA performed similarly to their respective non-PCA version but not all 
(see Supplementary Table S2). GPR, KRR, RR, and both RVR algorithms 
generally ranked high. Most algorithms performed worse with parcel- 
wise features, while RFR generally exhibited the worst performance. 

The workflow S4_R4 + GPR performed the best (see Table 2 a for its 
performance on each of the four datasets). This workflow showed the 
lowest average CV MAE with a high R 2 and a high correlation between 
true and predicted age ( Fig. 2 b) but a relatively high age bias (Fig. S3). 
The second-best workflow, S4_R4 + PCA + GPR, performed similarly 
to the best workflow. Other workflows with the S4_R4 feature space, 
with or without PCA, together with the KRR, RVRpoly, and RVRlin al- 
gorithms, performed comparably. From the 128 workflows, we selected 
32 workflows while preserving diversity in terms of CV MAE. 

The 32 workflows selected for cross-dataset analysis showed the av- 
erage CV (5 ù 5-fold on training data) MAE (4.28–7.39 years) lower 
than the test (hold-out dataset) MAE (5.23–8.98 years) ( Fig. 2 c). The 
test-set correlation between true and predicted age ranged from 0.82 
to 0.93, while the age bias ranged from * 0.27 to * 0.75 (Table S3). All 
workflows showed a high similarity in their predictions (correlations 
0.83–0.99 averaged across the four runs). Due to this high similarity, 
the averaged predictions, i.e., ensemble, from 32 workflows were not 
better than the top-performing workflow (Fig. S2). The workflows that 
performed well within-dataset also performed well in cross-dataset pre- 
dictions (Fig. S6). These results indicate that the corresponding models 
could generalize well to data from a new unseen site. 

We selected 10 workflows with the lowest test MAE for further 
analysis. These workflows consisted of only voxel-wise feature spaces 

(S4_R4, S4_R8, and S0_R4) with and without PCA. The ML algorithms 
included GPR, RVRlin, RR, and LR. The best-performing workflow was 
the S4_R4 + PCA + GPR with the lowest average test MAE, a high R 2 , a 
high correlation between true and predicted age ( Fig. 2 d), and moderate 
age bias (Fig. S3), see Table 2 b for its performance on all four datasets), 
followed by the S4_R4 + GPR workflow. 
3.3. Test-retest reliability and longitudinal consistency 

The test-retest reliability and longitudinal consistency of the top 10 
workflows selected from the cross-dataset evaluation were evaluated 
using the CoRR and OASIS-3 datasets. 

For the short retest duration of less than three months, all 10 work- 
flows showed high test-retest reliability (CoRR: CCC = 0.95–0.98, age 
range = 20–84 years; OASIS-3: CCC = 0.77–0.86, age range = 43–81 
years). For the longer retest duration of 1–2 years in the CoRR dataset, 
CCC ranged between 0.94–0.97 (age range = 18–88 years) ( Table 3 ). 
These results show that the age was reliably estimated by the selected 
workflows. 

Next, we evaluated the longitudinal consistency as the correlation 
between the difference in the predicted age and the difference in the 
chronological age ( Fig. 3 , Table S4). Six workflows out of 10 showed a 
significant positive linear relationship at the retest duration of 2–3.25 
years (r between 0.451–0.437, p < 0.05) in the CoRR dataset. These 
workflows included the S4_R4 feature space with and without PCA with 
the GPR, RVRlin, and RR algorithms. In contrast, none of the workflows 
showed a linear relationship in the OASIS-3 dataset (retest duration 3–4 
years). 

Although the workflows showed similar test-retest reliability and 
longitudinal consistency, the workflow S4_R4 + PCA + GPR showed the 
lowest MAE on these sub-samples ( Tables 3 , S4). Therefore, considering 
all the analysis scenarios, within-dataset, cross-dataset, test-retest reli- 
ability, and longitudinal consistency, although other workflows were 
also competitive, we deemed the S4_R4 + PCA + GPR workflow as well- 
performing and chose it for further analysis. 
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Fig. 3. Longitudinal consistency. (top) The brain-age delta from two scans of the same subjects and (bottom) the scatter plot between the difference in chronological 
age and the difference in predicted age between two scans acquired within a retest duration of a. 2–3.25 years (CoRR dataset) b. 3–4 years (OASIS-3 dataset). 
3.4. Bias correction and correlation with behavioral/cognitive measures 

In the CamCAN data, FI was negatively correlated with age 
( r = * 0.661, p = 1.92e-80), while motor learning reaction time was pos- 
itively correlated with age ( r = 0.544, p = 1.11e-24). In the eNKI data, 
CWIT inhibition trial completion time ( r = 0.361, p = 6.50e-12) and TMT 
number-letter switching trial completion time ( r = 0.279, p = 1.45e-07) 
were positively correlated with age. On the other hand, WASI matrix 
reasoning scores were negatively correlated ( r = * 0.240, p = 6.03e-06), 
and WASI similarities scores were not correlated ( r = 0.052, p = 0.332) 
with age ( Table 4 ). 

As several ways have been proposed to obtain the correlation be- 
tween delta and behavior, e.g., using bias-corrected delta or using age 
as a covariate, we evaluated several alternatives (see Section 2.6 ). 
3.4.1. Within-dataset predictions 

Within-dataset hold-out predictions, i.e., single prediction per sub- 
ject, were derived using the chosen workflow (S4_R4 + PCA + GPR). 
The bias correction model was estimated using the CV predictions on 
the same dataset. In both datasets, there was no residual age bias af- 
ter bias correction: CamCAN, r = * 0.17, p = 1.13e-05 and r = 0.00, 
p = 0.999; and eNKI, r = * 0.20 p = 4.53e-07 and r = 0.001, p = 0.986, 
before and after correction, respectively (Fig. S3). 

We first calculated the correlation between the uncorrected delta and 
behavioral measures using age as a covariate ( Table 4 a). In the Cam- 
CAN data, a higher delta was associated with lower FI ( r = * 0.154, 
p = 0.0001) and higher motor learning reaction time ( r = 0.181, 
p = 0.002). In the eNKI data, a higher delta was associated with lower re- 
sponse inhibition and selective attention, as indicated by a higher CWIT 
inhibition trial completion time ( r = 0.109, p = 0.045). There were no 
correlations between delta and intelligence scores (WASI matrix reason- 

ing and similarities). The results with age, age 2 , and gender as covariates 
showed a similar trend (Table S5a). 

Next, we repeated this analysis with the corrected delta ( Table 4 a) 
and expected results similar to using uncorrected delta with age as a 
covariate. We indeed found similar correlations with FI ( r = * 0.157 
p = 7.24e-05) and motor learning reaction time ( r = 0.186 p = 0.001) 
in the CamCAN data, but no significant correlation with CWIT inhibi- 
tion trial completion time ( r = 0.094, p = 0.084) in the eNKI data. The 
correlations using corrected delta with covariate were highly similar to 
uncorrected delta with covariate ( Table 4 a). 
3.4.2. Cross-dataset predictions 

Cross-dataset predictions were derived for the CamCAN and 
eNKI datasets using the S4_R4 + PCA + GPR workflow trained 
on the IXI + eNKI + 1000BRAINS ( N = 2302) and IXI + Cam- 
CAN + 1000BRAINS ( N = 2356) datasets, respectively. 

In the CamCAN data, the bias correction model was successful with 
age bias before and after correction r = * 0.23, p = 3.06e-09 and 
r = * 0.04, p = 0.263, respectively. However, the correction was not 
successful in the eNKI data; the age bias was r = * 0.49, p = 3.62e-38 
and = * 0.35, p = 8.39e-19 before and after correction, respectively (Fig. 
S3). This result indicates that the bias correction might not always work 
well when applied to cross-dataset. 

Using age as a covariate on the uncorrected delta, we did not find 
a significant delta-behavior correlation in the CamCAN data. In the 
eNKI data, a higher delta was associated with lower response inhibi- 
tion and selective attention, as indicated by a higher CWIT inhibition 
trial completion time ( r = 0.208, p = 0.0001) and lower cognitive flexi- 
bility indicated by a higher TMT completion time ( r = 0.147, p = 0.006) 
( Table 4 b). There were no correlations between delta and intelligence 
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 scores (WASI matrix reasoning and similarities). The results with age, 

age 2 , and gender as covariates showed a similar trend (Table S5b). 
Since there was a residual correlation between corrected delta and 

age, the correlations with behavior without age as a covariate can be un- 
reliable. We, therefore, do not discuss correlations of the corrected delta 
without age as a covariate, but they are reported in Table 4 for complete- 
ness. Additionally, as expected, the correlations using corrected delta 
with age as a covariate were similar to uncorrected delta with covariate 
( Table 4 b). 
3.5. Predictions in the ADNI sample 

At timepoint 1, the mean uncorrected delta was * 5.97 years in HC, 
* 4.39 in EMCI, * 3.57 in LMCI, and * 2.13 in AD ( Fig. 4 a). In other 
words, the model underestimated age. The slope and intercept derived 
from the bias correction model using the training data (CV predictions) 
could not entirely correct for the under-estimation and age bias ( Fig. 4 b). 
Bias correction using the whole ADNI HC sample removed the bias (aver- 
age delta, HC = 0, EMCI = 0.85, LMCI = 2.09, AD = 4.47 years) ( Fig. 4 c). 
ANOVA revealed that the corrected delta differed significantly across the 
groups ( F = 12.94, p = 3.10e-08), and post-hoc t-tests revealed signifi- 
cant differences between AD and HC ( p = 1.16e-08), EMCI ( p = 1.87e- 
05), LMCI ( p = 0.043), and HC and LMCI ( p = 0.022) after Bonferroni 
correction. At timepoint 2, the pattern was similar to timepoint 1 but 
with higher corrected delta values (EMCI = 1.15 years, LMCI = 2.88, 
AD = 6.59 years) ( Fig. 4 e-f, Table 5 ). These results demonstrate that our 
model could capture the range of normal structural variation related to 
age in healthy subjects and deviance in both MCI and AD patients. 

The correlations between HC sample-corrected delta and various 
clinical test scores were calculated with age as a covariate ( Table 6 ). At 
timepoint 1, the delta was negatively correlated with MMSE ( r = * 0.255, 
p = 0.016) and positively correlated with FAQ ( r = 0.275, p = 0.005) 
in the entire sample. No correlations were found in individual diagnos- 
tic groups or could not be calculated due to insufficient score data. At 
timepoint 2, the delta was negatively correlated with MMSE ( r = * 0.303, 
p = 2.40e-12) and positively correlated with CDR ( r = 0.270, p = 7.35e- 
10) and FAQ ( r = 0.331, p = 2.31e-14) in the whole sample. In the 
AD group, the delta was positively correlated with FAQ ( r = 0.298, 
p = 0.021) but not with MMSE or CDR. In the LMCI group, the delta was 
positively correlated with FAQ ( r = 0.309, p = 0.002), negatively corre- 
lated with MMSE ( r = * 0.227, p = 0.022), and not correlated with CDR. 
In the EMCI group, the delta positively correlated with CDR ( r = 0.153, 
p = 0.034) but not MMSE and FAQ scores. No correlations were found in 
the HC group. The correlations with age, age 2 , and gender as covariates 
were similar (Table S6). 

We also found that the size of HC sample used for bias correction 
considerably impacts the mean corrected delta in AD subjects (Fig. S7). 
Specifically, with fewer HC subjects, the variance of the corrected delta 
in AD was much higher in both sessions, e.g., at the timepoint 1 when 
using 21 HC samples, the mean AD delta ranged between Ì1–12 years 
and converged to 4.47 years as the sub-samples approached the com- 
plete sample. 
3.6. Relationship of MAE with delta and delta-behavior correlations 

Using 32 workflows selected from the cross-dataset evaluation, we 
analyzed whether model performance (MAE) was associated with their 
brain-behavior correlations. The corrected mean delta in AD ranged 
from 5.43 to 10.01 years, with some relatively poor performing mod- 
els yielding a higher delta in AD (Table S7). Lower accuracy (higher 
MAE) was associated with stronger delta-MMSE correlation ( Fig. 5 c). 
In contrast, lower MAE was associated with a stronger brain-behavior 
correlations in the two healthy samples, delta-motor learning reaction 
time in CamCAN, and delta-CWIT inhibition trial completion time in 
eNKI datasets ( Fig. 5 a & b). 
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Fig. 4. Brain-age delta in the clinical population. The box plot compares the delta between healthy control (HC), early mild cognitive impairment (EMCI), late mild 
cognitive impairment (LMCI), and Alzheimer’s disease (AD) from the ADNI sample at (left) timepoint-1 and (right) timepoint-2. Box plot with a & d. uncorrected 
delta. b & e. corrected delta using the CV predictions from the training set. c & f. corrected delta using the predictions from HC-ADNI subjects. 

Table 5 
Prediction performance on the ADNI data from two timepoints using the best-performing (S4_R4 + PCA + GPR) workflow. Abbreviations: HC: healthy control, EMCI 
and LMCI: early and late mild cognitive impairment, AD: Alzheimer’s disease. 
Time-point ADNI 

sample N MAE MSE Corr (true, pred) Mean 
delta Mean corrected delta 

(train samples) Mean corrected delta 
(ADNI-HC samples) 

1 HC 209 6.56 61.19 r = 0.76, p = 4.67e-40 * 5.97 * 5.18 0.00 
EMCI 237 5.76 52.30 r = 0.72, p = 1.07e-38 * 4.39 * 3.78 0.85 
LMCI 127 5.56 46.52 r = 0.75, p = 4.30e-24 * 3.57 * 2.86 2.09 
AD 125 5.18 44.29 r = 0.66, p = 5.00e-17 * 2.13 * 1.20 4.47 

2 HC 153 6.56 62.73 r = 0.73, p = 5.46e-27 * 6.05 * 5.27 0.00 
EMCI 197 5.57 50.82 r = 0.73, p = 1.23e-34 * 4.32 * 3.66 1.15 
LMCI 104 5.68 47.75 r = 0.72, p = 6.54e-18 * 3.25 * 2.44 2.88 
AD 61 5.31 44.12 r = 0.59, p = 6.09e-07 * 0.76 0.31 6.59 
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Table 6 
Pearson’s correlation coefficients between corrected brain-age delta using S4_R4 + PCA + GPR workflow and cognitive measures (MMSE, CDR, and FAQ) using age 
as a covariate from the ADNI sample. The correlations were computed for the whole sample and each diagnostic group (HC, EMCI, LMCI and AD) separately from 
two timepoints. Abbreviations: MMSE: Mini-Mental State Examination, CDR: Global Clinical Dementia Rating Scale, FAQ: Functional Assessment Questionnaire; HC: 
healthy control, EMCI and LMCI: early and late mild cognitive impairment, AD: Alzheimer’s disease. 

Timepoint-1 Timepoint-2 
MMSE CDR FAQ MMSE CDR FAQ 

HC N = 68 N = 67 N = 74 N = 153 N = 147 N = 149 
r = * 0.202, p = 0.101 r = 0.025, p = 0.841 r = 0.153, p = 0.196 r = * 0.065, p = 0.427 r = * 0.019, p = 0.819 r = 0.070, p = 0.399 

EMCI N = 3 N = 3 N = 3 N = 196 N = 194 N = 193 
n.a. n.a. n.a. r = * 0.079, p = 0.272 r = 0.153, p = 0.034 r = 0.091, p = 0.211 

LMCI N = 2 N = 2 N = 2 N = 103 N = 102 N = 103 
n.a. n.a. n.a. r = * 0.227, p = 0.022 r = 0.115, p = 0.253 r = 0.309, p = 0.002 

AD N = 17 N = 17 N = 26 N = 61 N = 61 N = 61 
r = * 0.435, p = 0.092 r = 0.221, p = 0.412 r = 0.244, p = 0.240 r = * 0.186, p = 0.155 r = 0.218, p = 0.094 r = 0.298, p = 0.021 

Whole sample N = 90 N = 89 N = 105 N = 513 N = 504 N = 506 
r = * 0.255, p = 0.016 r = 0.114, p = 0.290 r = 0.275, p = 0.005 r = * 0.303, p = 2.40e-12 r = 0.270, p = 7.35e-10 r = 0.331, p = 2.31e-14 

Fig. 5. Correlation between MAE and delta-behavioral correlations obtained using 32 workflows a. CamCAN ( N = 302) b. eNKI ( N = 340) c. ADNI ( N = 61). For 
CamCAN and eNKI data, the within-dataset delta-behavior correlations with age as a covariate were used. For ADNI data, we used the delta-behavior correlations 
using corrected delta (corrected using the HC sample) with age as a covariate. 
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Fig. 6. Comparison of our best workflow (S4_R4 + PCA + GPR) with the brainageR model on a. CoRR dataset (left) the box plot comparing predicted age from 
two models with true age using a sub-sample of 107 subjects, (center) the scatter plot between the chronological (true) age and predicted age, (right) the scatter 
plot between the chronological (true) age and brain-age delta. b. OASIS-3 dataset (for visual clarity, the box plot is created using a random sub-sample; N = 120) c. 
MyConnectome dataset (the red cross indicates the outlier scan that was removed from the analysis; final N = 19). d. Performance metrics for all datasets. For the 
CoRR dataset, the table shows average values from 100 iterations of sub-sampled data, but the plots are from one iteration. 
3.7. Comparison with brainageR and effect of preprocessing and tissue 
types 

Next, we compared the S4_R4 + PCA + GPR workflow and the 
brainageR model both trained on the same data using the CoRR, OASIS- 
3, and MyConnectome datasets ( Fig. 6 ). 

In CoRR dataset, S4_R4 + PCA + GPR (mean MAE = 4.69, r = 0.947, 
bias r = * 0.377) performed better than brainageR (mean MAE = 4.91, 
r = 0.946, bias r = * 0.128) in MAE (paired t -test: t = * 8.04, p = 1.97e- 
12) but brainageR showed a lower mean age bias (Steiger’s Z test 
( Steiger, 1980 ) z = * 3.31, p = 0; Figs. 6 a & S8). There was no significant 
difference between the mean true and predicted age correlations from 
two models ( z = 0.133, p = 0.447). 

S4_R4 + PCA + GPR (MAE = 4.74, r = 0.836, bias r = * 0.092) 
also showed lower MAE than brainageR (MAE = 5.07, r = 0.805, bias 
r = * 0.058) on the OASIS-3 dataset ( Fig. 6 b). The predicted ages (paired 
t -test: t = * 1.37, p = 0.17) and the bias ( z = * 1.031, p = 0.151) of the 
two models were similar but the r value for our model was significantly 
higher ( z = 3.101, p = 0.001). Test-retest reliability on a sub-sample 
of the OASIS-3 dataset (retest duration < 3 months) was higher for 
brainageR (CCC = 0.94 vs. 0.82 for S4_R4 + PCA + GPR). Both mod- 
els did not show longitudinal consistency at a retest duration of 3–4 
years. 

Additionally, S4_R4 + PCA + GPR workflow (MAE = 4.13) performed 
significantly better than brainageR (MAE = 7.18) on the MyConnectome 

dataset (paired t -test: t = 9.60, p = 1.66e-08; Fig. 6 c). Note that one out- 
lier scan (true age = 48) was excluded from this analysis (final N = 19). 

To gain insight into the impact of preprocessing, we compared 
within-dataset performance of our workflow using SPM preprocessing 
on IXI and CamCAN datasets. On both datasets, CAT-derived GM fea- 
tures performed better (IXI: MAE = 4.85 years; CamCAN: MAE = 5.01) 
than SPM-derived GM features (IXI: MAE = 6.25; CamCAN: MAE = 5.82) 
( Table 7 ). SPM-derived features from three tissue types performed better 
(IXI: MAE = 5.08; CamCAN: MAE = 4.88) than using only SPM-derived 
GM features, indicating that different tissue types carry complementary 
information ( Table 7 ). 
4. Discussion 
4.1. Effect of feature space and ML algorithm 

The wide range of options available for designing brain-age estima- 
tion workflows makes it challenging to disentangle the effect of feature 
space and ML algorithms. To this end, we investigated 128 workflows 
constituting combinations of 16 feature representations (voxel-wise and 
parcel-wise) extracted from GMV images and eight ML algorithms. 

Previous studies have shown that the age prediction MAE ranges be- 
tween Ì5–8 years for broad age range data (18–90 years) when using 
GMV features (Table S1). Our workflows showed performance in a sim- 
ilar range, with some of the workflows generalizing well to data from a 

12 



S. More, G. Antonopoulos, F. Hoffstaedter et al. NeuroImage 270 (2023) 119947 
Table 7 
Comparison of within-dataset performance between models trained with CAT-preprocessed GM features ( S 4 _ R 4 + P C A + G P R ; our framework), SPM- 
preprocessed GM features ( S 4 _ R 4 S P M + P C A + G P R ) and SPM-preprocessed GM + WM + CSF features ( S 4 _ R 4 W M + C S F 

S P M + P C A + G P R ) on IXI and CamCAN data. 
Abbreviations: MAE: mean absolute error, MSE: mean squared error, Corr (true, pred): Pearson’s correlation between true age and predicted age, Age bias: Pearson’s 
correlation between true age and brain-age delta. 

Workflow MAE MSE Corr (true, pred) Age bias 
IXI ( N = 562) S4 _ R 4 + PCA + GPR 4.85 36.89 r = 0.93, p = 1.03e-247 r = * 0.21, p = 7.39e-07 

S4 _ R 4 SPM + PCA + GPR 6.25 62.34 r = 0.88, p = 1.15e-181 r = * 0.40, p = 1.61e-22 
S4 _ R 4 W M+ CSF 

SPM + PCA + GPR 5.08 40.80 r = 0.92, p = 3.98e-234 r = * 0.27, p = 1.64e-10 
CamCAN ( N = 650) S4 _ R 4 + PCA + GPR 5.01 40.89 r = 0.94, p = 6.45e-307 r = * 0.17, p = 1.14e-05 

S4 _ R 4 SPM + PCA + GPR 5.82 56.83 r = 0.92, p = 3.87e-258 r = * 0.30, p = 2.66e-15 
S4 _ R 4 W M+ CSF 

SPM + PCA + GPR 4.88 39.77 r = 0.94, p = 8.29e-308 r = * 0.25, p = 1.53e-10 
new site. Specifically, the MAE ranged between 4.90–8.48 years in CV 
and 4.73–8.38 years in test data for within-dataset analysis and for cross- 
dataset analysis between 4.28–7.39 years and 5.23–8.98 years in CV 
and test data, respectively. The test MAE and R 2 were highly correlated 
for both within-dataset and cross-dataset analysis (Tables S2 & S3, Fig. 
S5). The workflows showed high positive correlations between chrono- 
logical age and predicted age for within-dataset (r between 0.81–0.93) 
and cross-dataset (r between 0.82–0.93) analyses. The workflows that 
performed well in within-dataset analysis also performed well in cross- 
dataset analysis. The lower cross-dataset CV MAE (4.28–7.39 years) 
compared to within-dataset CV MAE (4.90–8.48 years) might be because 
of the larger sample sizes in the cross-dataset analysis or possible over- 
fitting in smaller samples. This corroborates previous studies showing 
lower errors with larger training sets ( Baecker et al., 2021 ; de Lange 
et al., 2022 ), contrary to others that have shown a negative correla- 
tion between sample size and CV performance estimates ( Wolfers et al., 
2015 ; Varoquaux, 2018 ). The age range of the training and test data 
affects the performance estimates. Specifically, when using a narrow 
age range, performance metrics such as MAE and RMSE are usually bet- 
ter than broad age range evaluations ( Cole, 2020 ; Peng et al., 2021 ; 
de Lange et al., 2022 ). However, the lower errors and hence smaller 
brain-age delta values in those cases are not necessarily due to better 
model performance but rather because the predictions are closer to the 
mean age of the group. Here, our focus was on broad age range mod- 
els, and the errors we obtained are within the range of what has been 
previously shown. 

Our results showed that the choice of feature space and the ML al- 
gorithm both affect the prediction error. In general, feature spaces de- 
rived from voxel-wise GMV such as S4_R4, S4_R8, and S0_R4 in combina- 
tion with GPR, KRR, RVRpoly, and RVRlin algorithms performed well in 
the within-dataset analysis. The results were similar with PCA retaining 
100% variance for some workflows but not all, especially the regularized 
models (LR and ENR) showed lower performance after PCA (see Supple- 
mentary Table S2). This might be because of the different biases of ML 
algorithms, e.g., due to regularization. It is possible that the sparsity- 
inducing penalization in addition to PCA leads to lower accuracy mod- 
els. Some of these selected workflows also performed well on cross- 
dataset analysis. Specifically, the voxel-wise GMV features smoothed 
with a 4 mm FWHM kernel and resampled to a spatial resolution of 
4 mm, without and with PCA (S4_R4 and S4_R4 + PCA) together with 
the GPR algorithm performed best in both the within-dataset and cross- 
dataset analyses. A previous study has reported a voxel size of 3.73 mm 3 
and a smoothing kernel of 3.68 mm as the optimal parameters for pro- 
cessing GM images for brain-age prediction with a performance similar 
to our workflows ( Lancaster et al., 2018 ). In general, parcel-wise fea- 
tures performed worse than voxel-wise features irrespective of the ML 
algorithm used, suggesting that the GMV summarized from parcels leads 
to a loss of age-related information. Our results align with a recent study 
comparing several ML models (GPR-dot product kernel, RVR-linear ker- 
nel, and SVR-linear kernel) trained on region-based and voxel-based 
features with or without PCA on a narrower age range (47–73 years) 
( Baecker et al., 2021 ). They found minimal differences in performance 

due to the ML algorithms with voxel-based features performing better 
than region-based features. 

Our results also indicate that the non-linear algorithm (GPR with RBF 
kernel) and the kernel-based algorithms (KRR and RVR) outperformed 
linear algorithms such as RR and LR. Surprisingly, the non-linear RFR 
algorithm performed the worst irrespective of the feature space used 
(Fig. S4). This suggests that capturing distributional information using 
the RBF kernel, as we did using GPR, and use of kernels that capture the 
similarity between the GMV features in an invariant manner (e.g., Pear- 
son correlation) is beneficial. These results corroborate a recent study 
that comprehensively evaluated 22 regression algorithms (test MAE be- 
tween 4.63–7.14 years) in broad age range data (18–94 years) using 
GMV features and found SVR, KRR, and GPR with a diverse set of ker- 
nels to perform well ( Beheshti et al., 2022 ). 

In sum, the smoothed and resampled voxel-wise data (such as S4_R4, 
S4_R8) with either a non-linear or a kernel-based algorithm (GPR with 
RBF kernel, KRR with polynomial kernel degree (1 or 2), and RVR with 
linear and polynomial degree 1 kernels) are well suited for brain-age 
estimation. Sometimes, especially with a large number of features, PCA 
might help improve performance ( Franke et al., 2010 ; Baecker et al., 
2021 ). However, we found the performance of these workflows with 
and without PCA to be similar. Therefore, one could use the features 
directly for immediate interpretability of the models; on the other hand, 
if computation is a constraint, then the PCA retaining 100% variance 
could be used without affecting the performance. 

Future studies can investigate options to improve model generaliz- 
ability, such as data harmonization to remove site effects and considera- 
tions for population structure (e.g., over-representative of the Caucasian 
population in the datasets used). 
4.2. Test-retest reliability and longitudinal consistency 

The brain-age estimates must be reliable within a subject. We found 
the delta to be reliable over a short scan delay (CoRR: CCC = 0.95–0.98, 
age range = 20–84; OASIS-3: CCC = 0.76–0.85, age range = 43–80). 
The reliability of delta within a short scan duration has been reported 
in previous studies. For example, one study showed an intraclass 
correlation coefficient (ICC) of 0.96 between deltas from subjects 
scanned an average of 28.35 ± 1.09 days apart ( N = 20, mean age at 
first scan = 34.05 ± 8.71) ( Cole et al., 2017 ). Another study showed 
an ICC of 0.93 in young adults from the OASIS-3 dataset ( N = 20, 
age range = 19–34) scanned within a short delay of less than 90 days 
( Franke and Gaser 2012 ). Another study found an ICC of 0.81 with a 
mean interval of 79 days between scans ( N = 20, chronological age = 45 
years) ( Elliott et al., 2021 ). 

Longitudinal consistency, i.e., chronologically proportionate in- 
crease in predicted age, is crucial for real-world application. Previous 
studies have shown lifestyle interventions, such as meditation and ex- 
ercise ( Luders et al., 2016 ; Steffener et al., 2016 ), can have positive 
effects on brain-age, while factors such as smoking and alcohol intake 
can have adverse effects ( Bittner et al., 2021 ). For instance, 18 months 
of lifestyle intervention, including diet change and physical activity, 
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showed attenuated brain-age in a longitudinal sample which correlated 
with improvement in several physiological measures ( Levakov et al., 
2022 ).Thus, lifestyle can lead to different longitudinal brain-age trajec- 
tories. However, in our analyses, we assumed that there were no such 
interventions over the retest duration as the datasets did not provide 
such information. With this assumption, we expected brain-age to in- 
crease proportionally with chronological age. 

In support of this assumption, we found a positive linear relationship 
between the difference in predicted age and the difference in chronolog- 
ical age at a retest duration of 2–3.25 years ( N = 26; r = 0.447, p = 0.022) 
in the CoRR dataset. However, there was no correlation in the OASIS- 
3 dataset with a retest duration of 3–4 years ( N = 127; r = * 0.008, 
p = 0.932). Thus, the evidence of longitudinal consistency was weak. 
This can be speculatively explained by the maximum test-retest dura- 
tion of 3–4 years which lies within the range of the MAE for the OASIS-3 
dataset (MAE session-1: 5.08 and session-2: 5.86 years, Table S4). Taken 
together, the high reliability supports the use of brain-age in clinical set- 
tings; however, further evaluations are needed to establish longitudinal 
consistency. 
4.3. Effect of bias correction 

Most brain-age estimation workflows produce biased results, i.e., 
overestimation at younger ages and underestimation at older ages 
( Liang et al., 2019 ). Therefore, correcting this age bias is important to 
facilitate individual-level decisions. Here, we adopted a bias correction 
model that does not use the chronological age of test samples for cor- 
rection ( Cole, 2020 ), as using chronological age can hamper fair com- 
parison between workflows ( de Lange et al., 2022 ). 

The tested workflows generally showed negative associations be- 
tween chronological age and delta for both within-dataset (r between 
* 0.22 to * 0.83) and cross-dataset (r between * 0.27 to * 0.75) predic- 
tions. However, this age bias was less pronounced in more accurate mod- 
els (Fig. S5). This result is in line with the previous work ( de Lange et al., 
2022 ) that showed that if input features are not informative enough 
to predict age, predictions will be closer to the median or mean age, 
leading to this bias. Additionally, we found that the data used to esti- 
mate the bias correction models can significantly impact the corrected 
delta. Specifically, within-dataset-derived models corrected the age bias 
more adequately than cross-dataset models (Fig. S3). This discrepancy 
might be due to the difference in data properties, e.g., scanner-specific 
idiosyncrasy, between the training and the out-of-site test data. Our re- 
sults suggest that a bias correction model might not always work well 
when applied to a new site, even when the training data itself consists 
of multiple sites. Consequently, using part of the test data to correct the 
age bias in the remaining test data works well (as seen in the ADNI data 
analysis, Section 3.5 ). However, this might not be feasible when the test 
sample is small or in the extreme case, a single test subject is available. 

How much data is needed for learning a bias correction model is 
an important but unexplored question. We investigated this by learn- 
ing bias correction models from sub-samples of the HC subjects from 
ADNI data. Smaller samples led to higher variance in the efficacy of 
bias correction models when applied to AD patients ( Varoquaux, 2018 ). 
For instance, at the smallest sample size ( N = 21), the average corrected 
delta of the AD patients varied from 1 to 12 years (Fig. S7, ADNI time- 
point 1). It is likely that different studies use different samples for bias 
correction, so the results should be interpreted and compared with cau- 
tion. This result shows the importance of using large samples for bias 
correction and emphasizes careful analysis and reporting of the results. 
4.4. Correlation with behavior 

Using the selected workflow we observed that the correlation of delta 
with behavioral measures is sensitive to whether the delta was adjusted 
for age, either via bias correction or using it as a covariate. For instance, 

the uncorrected delta was not correlated with FI and motor learning re- 
action time (in CamCAN data) or CWIT inhibition trial completion time 
(in eNKI data); however, significant correlations were obtained using 
age-adjusted delta ( Table 4 ). Thus, it is important to control for age 
when analyzing correlations between delta and behavioral measures. 

Using out-of-sample predictions from within-dataset analysis, we 
found that a higher uncorrected delta (with age as a covariate) was as- 
sociated with lower FI, higher motor learning reaction time (from Cam- 
CAN data), and lower response inhibition and selective attention, indi- 
cated by higher CWIT inhibition trial completion time (from eNKI data). 
We expected these correlations to be similar to correlations calculated 
using corrected delta ( de Lange and Cole, 2020 ), as there was no signif- 
icant age bias. In the CamCAN data, the behavioral correlations using 
uncorrected delta with age as a covariate and corrected delta were quite 
similar (FI: r = * 0.154, p = 0.0001 vs. r = * 0.157, p = 7.24e-05; motor 
learning reaction time: r = 0.181, p = 0.002 vs. r = 0.186, p = 0.001). 
However, the correlation of CWIT inhibition trial completion time with 
uncorrected delta with age as a covariate was significant but not when 
using the corrected delta ( r = 0.109, p = 0.045 vs. r = 0.094, p = 0.084). 
This slight difference could potentially be explained by the small effect 
size and differences inherent in the two methods used for correction. 

We also found that there was disagreement between delta-behavior 
correlations from within-dataset and cross-dataset predictions with age 
as a covariate. For instance, CamCAN showed significant correlations 
with FI and motor learning reaction time with within-dataset delta but 
not with cross-dataset delta. On the other hand, eNKI showed signifi- 
cant correlations only with CWIT inhibition trial completion time us- 
ing within-dataset delta, but a significant correlation with TMT com- 
pletion time was found using cross-dataset delta. These results indicate 
that the subtle differences in predictions can impact behavioral corre- 
lations, even though the two predictions were highly correlated (Cam- 
CAN: r = 0.961, eNKI: r = 0.962; Fig. S6). Thus, the delta-behavior cor- 
relations, whether using within-dataset or cross-dataset delta, should be 
interpreted with caution. 

Taken together, within-dataset data yields better bias correction 
models, as we observed in two scenarios, behavioral correlations and 
delta estimation. However, when enough data are not available, the re- 
sulting models may fail to correct the age bias, leading to high variability 
in the mean delta (Fig. S7). We therefore caution the practitioners and 
recommend carefully assessing bias correction models, e.g., using boot- 
strap analysis, before application. We observed that subtle differences in 
predicted age (within-dataset vs. cross-dataset) lead to different behav- 
ioral correlations, which can question the impact of the workflow used 
for prediction, the analysis method used for computing behavioral cor- 
relation (corrected delta versus covariates) and their interaction. Future 
studies should focus on disentangling such intricacies before applying 
the brain-age paradigm in practice. 
4.5. Higher brain-age delta in neurodegenerative disorders 

Neurodegenerative disorders such as AD, MCI, and Parkinson’s dis- 
ease (PD) are accompanied by brain atrophy. Many studies have shown 
a decrease in global and local GMV in MCI and AD ( Good et al., 2001 ; 
Karas et al., 2004 ; Fjell et al., 2014 ) and also in a broad range of neu- 
ropsychiatric disorders ( Kaufmann et al., 2019 ). Consequently, an in- 
creased delta, i.e., older appearing brains, has been reported in patients 
with MCI (3–8 years) and AD ( Ì10 years) ( Franke and Gaser 2012 ; 
Gaser et al., 2013 ; Varikuti et al., 2018 ). We assessed the delta in HC, 
EMCI, LMCI, and AD patients by applying our best-performing workflow 
followed by a bias correction model estimated on HC. We found that 
brain aging is advanced by Ì4.5–7 years in AD, Ì2–3 years in LMCI, 
and Ì1 year in EMCI (timepoint 1-timepoint 2; Table 5 ). Furthermore, 
the delta was correlated with measures associated with disease severity 
and cognitive impairment in MCI and AD patients. Thus, in line with 
previous studies, brain-age delta confirmed its potential to indicate ac- 
celerated brain aging in neurodegenerative diseases based on structural 
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MRI data ( Franke and Gaser, 2012 ; Varikuti et al., 2018 ; Cole et al., 
2020 ; Eickhoff et al., 2021 ; Lee et al., 2021 ). 

We also show that different workflows can lead to different delta 
estimates in AD and, consequently, different correlations with cognitive 
measures (Table S7). In addition, the mean corrected delta in the patient 
group depends on the type (within-dataset or cross-dataset) and size of 
sample used for bias correction (Figure S7). Thus, the results should be 
interpreted with caution when comparing different studies. 
4.6. Relationship of MAE with delta and delta-behavior correlations 

The utility of age prediction models lies in their application to cap- 
ture atypical aging. However, to achieve this, it is imperative to min- 
imize the methodological variance, due to decisions in feature space 
and ML algorithms, by building accurate models so that the resulting 
brain-age delta captures biological variance. A recent study has shown 
that delta from overfitted models (i.e., with higher training accuracy) 
results in smaller differences in AD vs. CN, while delta from a model 
with comparatively lower (training) accuracy captures biological vari- 
ance ( Bashyam et al., 2020 ). However, our analyses and model selection 
was based on nested cross-validation. Therefore, our accurate models 
cannot be considered overfitted. 

In healthy samples, higher accuracy (lower MAE) was associated 
with higher delta-motor learning reaction time (CamCAN) and delta- 
CWIT inhibition trial completion time (eNKI) associations. In contrast, 
in AD patients, models with lower accuracy (higher MAE) showed a 
stronger delta-MMSE correlation. This observation that some less accu- 
rate models can better capture the delta-behavioral correlation better 
in AD is in line with a previous study ( Bashyam et al., 2020 ) ( Fig. 5 
and Table S7). These contrasting observations in healthy and patient 
cohorts make it difficult to develop a model selection strategy based on 
delta-behavioral correlations. 

The corrected mean delta in AD (corrected using the CN sample, 
indicative of separation between CN and AD), for the 32 workflows 
ranged from 5.43 to 10.01 years. Some moderately accurate models, 
e.g., S0_R4 + LR (delta = 7.27, MAE = 5.91 years), showed a high delta 
for AD and a strong correlation with AD scales (Table S7). However, 
the model with the highest delta (173 + RFR: delta = 10.01, MAE: 
9.07 years) showed a comparatively weaker correlation with behav- 
ior. Moreover, similarly performing models (S0_R4 + LR: delta = 7.27, 
MAE = 5.91 years vs. S8_R4 + KRR: delta = 7.17, MAE = 6.59 years) 
showed quite different correlation with behavior. This indicates a non- 
linear relationship between the models’ MAEs, deltas, and behavioral 
correlations. 

Based on these results, we speculate that perhaps using adequately 
regularized models in the patient population can be beneficial even if 
they show a lower accuracy. It might be possible that regularization 
pushes the models to focus on fewer specific features containing typical 
aging-related signal. This in turn could lead to lower accuracy models 
(as it downweighs some features) but also leads to delta estimates that 
are more informative of atypical aging. 

Taken together, comparing models based on their performance on 
patient data and delta-behavior correlations is a promising but open 
topic. In particular, it is unclear which delta-behavioral correlation to 
use, and generalizability of models across behavioral scores, samples, 
and disorders remains unknown. Further studies are needed to define 
appropriate procedures for model selection based on such criteria. 
4.7. Comparison with brainageR and effect of preprocessing and tissue 
types 

Using the same training data as brainageR, our workflow outper- 
formed brainageR in terms of MAE in three datasets; CoRR ( N = 107; 
mean MAE = 4.69 vs. 4.91), OASIS-3 ( N = 806; MAE = 4.74 vs. 5.07), 
and MyConnectome (N = 19; MAE = 4.13 vs. 7.18). However, the bias of 
our model was similar or higher than that of brainageR and its test-retest 

reliability was lower (OASIS-3, N = 36; CCC = 0.82 vs. CCC = 0.94). 
Overall, our workflow showed lower MAE, higher correlation between 
true and predicted age but also higher age bias compared to brainageR. 
These differences are likely driven by differences in preprocessing, and 
the use of three tissue types by brainageR as opposed to us using only 
GM. To investigate this further, we performed two additional analyses. 

Different VBM tools can provide different GMV estimates, in- 
fluencing the estimated association with age ( Tavares et al., 2019 ; 
Antonopoulos et al., 2023 ). The CAT-derived GMV features performed 
better than SPM preprocessing (both with S4_R4 + PCA for feature ex- 
traction together with the GPR algorithm for learning) in terms of MAE 
(e.g., IXI: MAE = 4.85 vs. 6.25), the correlation between true and pre- 
dicted age ( r = 0.93 vs. 0.88, p < 1e-6 both) and age bias ( r = * 0.21 vs. 
r = * 0.40, p < 1e-6 both) ( Table 7 ). We further found that the predictions 
when using three tissue types from SPM (GM, WM, and CSF) were better 
(IXI: MAE = 5.08, r = 0.92, p < 1e-6, bias: r = * 0.27, p < 1e-6). This is 
in line with a previous study that showed a slight performance improve- 
ment when using both GM and WM compared to only GM ( Cole et al., 
2017 ). Features from different tissue types may carry complementary 
information regarding age, providing better predictions and lower age 
bias. Many previous studies have used GM and WM together as features 
( Franke and Gaser, 2012 ; Cole et al., 2017 ; Cole et al., 2018 , 2020 ), and 
others have used all three tissue types ( Monté-Rubio et al., 2018 ; Xifra- 
Porxas et al., 2021 ; Hobday et al., 2022 ). CAT-derived GMV performed 
similarly to SPM-derived three tissue types with slightly lower age bias 
for the former ( Table 7 ), showing the suitability of GM for this task fol- 
lowing its clinical relevance in neurodegenerative disorders ( Karas et al., 
2004 ; Wu et al., 2021 ). Further studies are needed to cleanly disentangle 
the effect of tissue types on different performance criteria investigated 
here. 
5. Conclusion 

Numerous choices exist for designing a workflow for age prediction. 
The systematic evaluation of different workflows on the same data in 
different scenarios (within-dataset, cross-dataset, test-retest reliability, 
and longitudinal consistency) revealed a substantial impact of feature 
representation and ML algorithm choices. Notably, voxel-wise GM fea- 
tures, especially smoothed with a 4 mm FWHM kernel and resampled to 
a spatial resolution of 4 mm (S4_R4), were better than parcel-wise fea- 
tures. Additionally, performing PCA did not affect the prediction perfor- 
mance, but it can help reduce computational resources. ML algorithms, 
including Gaussian process regression with the radial basis kernel, ker- 
nel ridge regression with polynomial kernel degree 1 or 2, and rele- 
vance vector machine with linear and polynomial degree 1 kernels, per- 
formed well. Overall, some workflows performed well on out-of-site data 
and showed high test-retest reliability but only moderate longitudinal 
reliability. Consistent with the literature, we found a higher delta in 
Alzheimer’s and mild cognitive impairment patients after correcting the 
delta with a large sample of controls. Our results provide evidence for 
the potential future application of delta as a biomarker but also caution 
regarding analysis setup and data used for behavioral correlations and 
bias correction. Findings from the current study can serve as guidelines 
for future brain-age prediction studies. 
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A B S T R A C T

Voxel-based morphometry (VBM) analysis is commonly used for localized quantification of gray matter volume (GMV). Several alternatives exist to implement a
VBM pipeline. However, how these alternatives compare and their utility in applications, such as the estimation of aging effects, remain largely unclear. This leaves
researchers wondering which VBM pipeline they should use for their project. In this study, we took a user-centric perspective and systematically compared five
VBM pipelines, together with registration to either a general or a study-specific template, utilizing three large datasets (n> 500 each). Considering the known effect
of aging on GMV, we first compared the pipelines in their ability of individual-level age prediction and found markedly varied results. To examine whether these
results arise from systematic differences between the pipelines, we classified them based on their GMVs, resulting in near-perfect accuracy. To gain deeper insights,
we examined the impact of different VBM steps using the region-wise similarity between pipelines. The results revealed marked differences, largely driven by
segmentation and registration steps. We observed large variability in subject-identification accuracies, highlighting the interpipeline differences in individual-level
quantification of GMV. As a biologically meaningful criterion we correlated regional GMV with age. The results were in line with the age-prediction analysis,
and two pipelines, CAT and the combination of fMRIPrep for tissue characterization with FSL for registration, reflected age information better.

1. Introduction

Analysis of brain structure has provided important insights regard-
ing its organization in health and disease. T1-weighted (T1w) images
obtained using magnetic resonance imaging (MRI) are commonly used
for this purpose. However, raw T1w images cannot be compared di-
rectly due to their semiquantitative nature and inter- and intrasubject
variability (Jovicich et al., 2009). Volumetric analysis of T1w images
using voxel-based morphometry (VBM) (Wright et al., 1995; Ashburner
and Friston, 2000) allows the investigation of the volumetric com-
position of brain tissues across subjects. It estimates tissue volume
in each voxel and brings individual brains in a common reference
space permitting comparison. VBM analysis has provided a plethora of
valuable insights, for instance, in neurodegenerative diseases (Matsuda,
2013; Lin et al., 2013; Khagi et al., 2021; Colloby et al., 2014; Brewer,
2009) and psychiatric disorders (Yousef et al., 2020).

VBM has been successfully applied to study aging (Good et al., 2001;
Tisserand et al., 2004; Bourisly et al., 2015). Recently, prediction of
individuals’ age based on VBM-derived information has proven to be
a validated proxy for brain integrity and overall health (Habes et al.,
2016; Koutsouleris et al., 2014-09-01; Cole et al., 2018), and promising
for individualized clinical applications (Franke et al., 2010; Jonsson
et al., 2019; Koutsouleris et al., 2014-09-01; Su et al., 2011; Varikuti
et al., 2018). Brain-age prediction is an important and widely studied

< Corresponding author at: Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
E-mail address: k.patil@fz-juelich.de (K.R. Patil).

topic that aims to estimate the trajectory of healthy brain aging (Franke
and Gaser, 2019; Baecker et al., 2021).

To estimate the GMV from T1w images, some specific steps must
be performed. The main steps of a VBM pipeline are as follows: (i)
Segmentation creates probability maps where each voxel is assigned
a probability of belonging to specific brain tissues, usually gray matter
(GM), white matter (WM), and cerebrospinal fluid (CSF). Brain extrac-
tion, which is the process of removing the skull from an image and
leaving only actual brain tissues and CSF, is also a segmentation process
but in some cases is performed prior to segmentation of GM, WM and
CSF.

(ii) Spatial registration/normalization to a reference brain space
is performed so that anatomical regions are aligned. The reference
space can be either a general template (e.g., MNI-152) or a study-/data-
specific template (henceforth referred to as data-template) (Su et al.,
2022; Zhang et al., 2021; Li et al., 2018). Data-templates are mainly
used when comparing healthy subjects to patients to avoid bias due to
general templates constructed from healthy populations. Several ways
exist to create a data-template, and they are often created to match a
standard space, such as the MNI space. Most VBM pipelines come with
a general template.
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(iii) Modulation of the normalized tissue estimates aims at preserv-
ing the original amounts of tissue after spatial registration. To do so,
normalized images are adjusted by the amount of local volume changes.

Since the introduction of VBM in 1995 (Wright et al., 1995), several
alternatives and a multitude of options for each of the steps have been
proposed. Even though various VBM pipelines utilize the same steps,
the order of the steps may vary, and each step might use a different
algorithm with several configurable options. Moreover, the pipelines
can use those steps in a different order or perform some of them
simultaneously and/or iteratively. It is also possible to create hybrid
pipelines by combining the steps from different tools. Furthermore,
optional steps, for example, whether to create a data template or use
a general template provided by a tool, add to the already vast number
of choices. Consequently, even if a user chooses an off-the-shelf VBM
pipeline is not completely absolved of further choices. How the outputs
of VBM pipelines compare and their utility in different applications
remain poorly studied, which can lead to suboptimal choices (Peng
et al., 2021; Rajagopalan and Pioro, 2015; Dinsdale et al., 2021).

Previous work comparing VBM pipelines indeed provides evidence
for differences. A comprehensive comparison between Computational
Anatomy Toolbox (CAT) (Gaser and Dahnke, 2016) version 12.7, two
FSL-based and a hybrid (still FSL (Smith et al., 2004) dependent)
pipelines has shown that the choice of preprocessing pipeline has an
impact both in age prediction and sex classification (Zhou et al., 2022).
The same study showed that regions driving the results are pipeline
dependent, while the choice of the templates used for registration,
general or data-template, has little or no impact. FSL and SPM (Fris-
ton Karl et al., 2007) yield different outcomes, especially for cortical
regions (Popescu et al., 2016). A comparison focusing on registration
and segmentation steps of SPM and FSL concluded that these pre-
processing steps drive the regions identified in multiple amyotrophic
lateral sclerosis (Rajagopalan and Pioro, 2015). Segmentation and reg-
istration as implemented in SPM8 newseg, SPM8 DARTEL (Ashburner,
2007), and FSLVBM were found to have substantial influence on GMV
estimates and their relationship to age (Callaert et al., 2014). This study
additionally concluded that pipelines with limited degrees of freedom
for local deformations might overestimate between-group differences.
Finally, the selection of tissue probability maps (TPMs) as priors for
segmentation systematically impacts the segmentation outcome and,
in turn, affects the statistical estimates (Haynes et al., 2020). The
CAT12 VBM pipeline was found to perform better in the detection of
volumetric alterations in temporal lobe epilepsy compared to the VBM8
toolbox (Matsuda et al., 2012; Farokhian et al., 2017a).

Several studies have investigated the effects of individual VBM steps
and their parametrization. A comparison of 14 deformation algorithms
used for registration found that SyN (Avants et al., 2008) from the
Advance Normalization Toolkit (ANTs) (Avants et al., 2011a) and
DARTEL (CAT) were among those with the best performance, with
SyN exhibiting the highest consistency across subjects (Klein et al.,
2009) as well as being among the most robust to noise, partial vol-
ume effects and magnetic field inhomogeneities (Ou et al., 2014).
Segmentation algorithms from SPM, ANTs and FSL showed relatively
small differences in controls, but significant differences appeared when
comparing brains with atrophies, suggesting that the segmentation
algorithm should be selected according to the brain characteristics
of the study-population (Johnson et al., 2017). Dadar and colleagues
compared six segmentation tools and confirmed significant differences
between the tools as well as within-tool differences based on inter-
scanner analysis (Dadar and Duchesne, 2020). For brain extraction,
although FSL-BET has been reported to have low performance (Johnson
et al., 2017), it does not influence subsequent segmentation (Klauschen
et al., 2008). A comparison of SPM12, SPM8 and FreeSurfer5.3 (Dale
et al., 1999) showed that SPM12 estimates of total intracranial volume
(TIV) align better with manual segmentation (Malone et al., 2015).
SPM-based estimates in autism spectrum disorder and typically de-
veloping controls were closest to manual segmentation in terms of

TIV, followed by FreeSurfer, while FSL appeared to underestimate
TIV (Katuwal et al., 2016).

Taken together, different VBM pipelines produce different out-
comes. The disagreement in VBM pipelines hinders precise localization
and valid interpretation of tissue volume in the downstream analysis,
e.g., atrophy in patients with multiple sclerosis (Sepulcre et al., 2006;
Ceccarelli et al., 2008; Battaglini et al., 2009). To date, there is no
standard method to calculate GMV or guidelines on which implemen-
tation of VBM is appropriate for a study at hand, e.g., age prediction.
Additionally, the interaction of different algorithms and parameters in
each step of VBM for estimating GMV and their effect on age esti-
mates across the adult life-span, has not been thoroughly investigated.
Moreover, the utility of a data-template created from healthy subjects
and how it compares with a general template, especially in cross-site
studies, remains unanswered. Here, to fill this gap, utilizing three large
datasets (each n>500), we compared and evaluated five VBM pipelines
including two off-the-shelf workflows and three modularly constructed
pipelines utilizing commonly used neuroimaging tools. Each pipeline
was implemented in two versions, one using a general template and
one using a data-template, resulting in a total of 10 VBM pipelines. To
remain consistent with our user-centric approach and developer guide-
lines, we adopted the default parameters unless there were specific
recommendations from the developers (Tustison et al., 2013). First, we
investigated whether different VBM pipelines produce GMV estimates
that lead to different results in machine-learning-based predictions of
individuals’ chronological age. We also calculated regional correlation
to age, as GMV is known to decrease with age in healthy subjects. This
extrinsic evaluation provides a more objective and utilitarian proxy
for comparison (Cole et al., 2017b; Franke and Gaser, 2019; Varikuti
et al., 2018; Sowell et al., 2003) and a criterion based on biological
factors. Additionally, we showed that the pipelines indeed produce
distinct patterns of GMV using machine-learning-based classification.
Specifically, we address the following questions:

• How do the pipelines differ at the region- and the subject-level?
• What impact do brain extraction, segmentation and registration have
on GMV?

• What is the effect of using a data-template compared to a general
template?

• How do the pipeline outcomes compare in univariate and multi-
variate analyses?

• Which pipeline better reflects brain aging and performs best in
brain-age prediction?

With this comprehensive and systematic comparative analysis of VBM
pipelines, we aim to provide essential information and recommenda-
tions to researchers to help them select the VBM pipeline that best
matches their research goals.

2. Materials and methods

2.1. Datasets

We analyzed T1w images of healthy individuals from three large
datasets covering the adult lifespan,

eNKI (Nooner et al., 2012): population based sample of n = 953
subjects, of which 573 had no psychiatric or neurological disorders or
medication at the time of the scan (48.1 ± 17.2 years, 630 female).
CamCAN (Taylor et al., 2017; Shafto et al., 2014): n = 634 aging indi-
viduals without serious psychiatric conditions or cognitive impairment
(54.8 ± = 18.4 years, 320 female). IXI (https://brain-development.org/
ixi-dataset/): multisite sample of n = 582 normal and healthy subjects
(49.4 ± 16.7 years, 324 female). (Table S.1 in Supplementary Material)
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2.2. Pipelines

CAT (Gaser and Dahnke, 2016), a popularly used off-the-shelf VBM
tool, is a successor of the first VBM pipeline implemented in SPM (Ash-
burner and Friston, 2000). Here, we used the latest version CAT12.8
(r1813). Several general-purpose neuroimaging tools also provide func-
tionality that can be used to create VBM pipelines. FSLVBM (Douaud
et al., 2007) uses tools from FSL (Smith et al., 2004) and is also widely
used. ANTs (Avants et al., 2011a) provides broad image processing and
image analysis functionality, including all functions needed to perform
VBM. Hybrid VBM pipelines that combine the functionality of different
tools can be constructed, e.g., using fMRIPrep (Esteban et al., 2019),
which performs brain extraction using ANTs and then performs the rest
of the steps using FSL.

We devised five VBM pipelines following the recommended steps
and settings in the literature (Avants et al., 2011a): ANTs, ANTs-FSL,
fMRIPrep-FSL, FSLVBM, and CAT. These pipelines were selected to
reflect the choices that are common practice and easy to use. We used
each pipeline with a standard template (the default templates for CAT
and FSLVBM) irrespective of the dataset (general template) and with
a dataset-specific template that was created and used for registration
(data-template). Together, this resulted in ten pipelines.

2.2.1. ANTs
We used ANTs version 2.2.0. First, each scan was corrected using the

N4 bias field correction (Tustison et al., 2010) and then segmented to
select intracranial tissues using Atropos-based brain extraction (Avants
et al., 2011b). Next, Atropos segmentation initialized with K-means was
applied to segment the images into GM, WM and CSF. The GM-map
images were registered to a template (general or data-specific) using
a sequence of transformations. First, rigid body and affine transfor-
mations were applied, followed by a nonlinear BsplineSyN transform
with the parameters set as in Tustison and Avants (2013). The Jaco-
bian matrix from the spatial transformation was used to modulate the
segmented GM. Data-specific templates were created using the ANTs
build template method with default values. To create the template
images, the transformations were averaged and used iteratively (Avants
et al., 2010, 2011a). To keep the template shape stable over multiple
iterations of template building, the inverse average warp was calculated
and applied to the template image.

To facilitate the analysis, the data-template process was initialized
using a general MNI template. Therefore, the final data-template was
also in the MNI space. For all processes requiring tissue masks and
templates as well as for the registration to MNI, we used the ICBM 152
Non-linear Asymmetrical template version 2009a and corresponding
tissue probability maps (Fonov et al., 2009, 2011).

2.2.2. FSLVBM
We used FSL version 6.0. The images were prepared by automati-

cally reorienting and then cropping part of the neck and lower head.
Then, BET was used to extract the intracranial part of the brain,
which was then segmented into GM, WM and CSF using FAST. Data-
specific templates were created following FSLVBM’s process utilizing
all GM images from a given dataset. GM segmented images were
affinely registered to the ICBM-152 GM template, concatenated and
averaged. This averaged image was then flipped along the x-axis,
and the two mirror images were then reaveraged to obtain a first-
pass, study-specific affine GM template. Second, GM images were
reregistered to this affine GM template using nonlinear registration,
averaged and flipped along the x-axis. Both mirror images were then
averaged to create the final symmetric, study-specific, non * linear GM
template. The resulting data-template was in the MNI space. The GM
images were then nonlinearly registered to the template (either general
or data-specific) and modulated. As the general template, we used the
FSL-provided template (see Table 1).

2.2.3. fMRIPrep-FSL
The reportedly poor quality of BET in brain extraction might lead

to spurious results (Johnson et al., 2017); thus, we decided to test
a pipeline that uses a better brain extraction as provided by ANTs
followed by FSL for the rest of VBM processing. As fMRIPrep has
been well validated and is gaining popularity, we chose to use the
output of the fMRIPrep’s structural processing. In this hybrid pipeline
for image preparation and segmentation, we used fMRIPrep version
stable 20.0.6 (Esteban et al., 2019), which uses ANTs version 2.1.0.
Each T1w volume was corrected for intensity nonuniformity (INU)
using N4BiasFieldCorrection (Tustison et al., 2010) and skull-stripped
using ‘antsBrainExtraction.sh‘ (using the OASIS template). Brain tissue
segmentation into CSF, WM and GM was then performed using FSL
FAST (Zhang et al., 2001) (as used by the fMRIPrep FSL v5.0.9).
This FAST parametrization diverges from the one in FSLVBM in the
following parameters: (i) the Markov random field (MRF) beta value
for the main segmentation phase was set to H = 0.2, while the default
value in FSLVBM was 0.1, and (ii) the MRF beta value for mixeltype
was R = 0.2, while the default in FSLVBM was 0.3. Template creation,
spatial normalization, and modulation were identical to the FSLVBM
pipeline.

2.2.4. ANTs-FSL
The exact same processing, as mentioned above in the ANTs pipeline,

was used to prepare the images, correct bias field noise, perform brain
extraction and finally perform tissue segmentation using ANTs’ Atropos.
The creation of a data-specific template, registration and modulation
were implemented as in the FSLVBM pipeline. Note that the difference
between this pipeline and the fMRIPrep-FSL pipeline is the tissue
segmentation tool used.

2.2.5. CAT
CAT12.8 was used based on SPM12 (v7771) using MATLAB

(R2017b) and compiled for containerization in Singularity (2.6.1). CAT
provides a complete VBM pipeline including denoising with spatial-
adaptive nonlocal means, bias-correction, skull-stripping, and linear
and nonlinear spatial registration. Images are segmented by an adaptive
maximum a-posteriori approach (Rajapakse et al., 1997) with partial
volume model (Tohka et al., 2004). For nonlinear transformation,
the geodesic shooting algorithm (Ashburner and Friston, 2011) is
used. As the default template, an IXI-based template transformed
to MNI152NLin2009cAsym is provided. For the data-template, ini-
tially, all structural T1 images are segmented into GM, WM, and
CSF and spatially coregistered to the MNI standard template using
affine registration. The affine tissue segments were used to create the
new sample-specific geodesic shooting template that consists of four
iterative nonlinear normalization steps.

Table 1 summarizes the VBM steps of each pipeline we utilized in
our analyses.

2.3. Parcellation scheme and quality control

To decrease the dimensionality of the data and thereby facilitate
informative comparison and the use of machine-learning approaches,
we extracted region-level averages. However, to preserve good spa-
tial resolution, we selected a high granularity parcellation scheme. A
combination of three atlases covering the whole brain and together
constituting 1073 regions of interest (ROIs) was used: 1000 cortical
regions from the Schaefer atlas (Schaefer et al., 1991), 36 subcortical
regions from the Brainnetome Atlas (Fan et al., 2016) and 37 cerebellar
regions (Buckner et al., 2011). Regional GMV values were calculated as
the average of nonzero voxels within each region.

ANTs segmentation (Atropos), which was initiated with k-means, in
some cases returned tissues in a different order, resulting in selecting
the WM instead of the GM for further analysis. Therefore, we employed
the following quality check to ensure that selected tissue represented
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Table 1
Software/algorithm used for the main VBM steps in our analysis pipelines.
Pipeline Skull stripping Segmentation Template

(general/data-specific)
Registration/
Modulation

ANTs ANTs Brain Extraction Atropos ICBM MNI152Nlin2009a ANTsRegistrationAntsBuildtemplate

ANTs-FSL ANTs Brain Extraction Atropos ICBM MNI152Nlin6th generation FNIRTfslvbm_2_template

fMRIPrep-FSL ANTs Brain Extraction FAST ICBM MNI152Nlin6th generation FNIRTfslvbm_2_template

FSLVBM BET FAST ICBM MNI152Nlin6th generation FNIRTfslvbm_2_template

CAT CAT CAT ICBM MNI152Nlin2009c based CATCAT

GM. First, we discarded individuals who had a ratio of the mean of GM
voxels over the mean of WM and CSF voxels of less than 1.5. Further-
more, images that were close to the 1.5 threshold as well as randomly
sampled images were visually inspected for quality of segmentation.
Because developing a thorough quality check or tackling this issue
inside Atropos is out of the scope of this work, the threshold for the
ratio of mean GM over WM and CSF was experimentally identified.
Although CAT has an internal quality control method, for consistency,
we applied our test to all pipelines. We retained only subjects who
passed the quality checks across all the pipelines.

2.4. Age prediction

We performed machine-learning-based analysis to predict the age
of each subject using regional GMVs from each pipeline as features.
We chose this as a suitable test given that age is reliably associated
with GMV (Cole et al., 2017b; Franke and Gaser, 2019; Varikuti et al.,
2018; Sowell et al., 2003) and because of the increasing importance of
brain-age as a proxy for overall brain health (Cole et al., 2017b; Cole
and Franke, 2017; Won et al., 2020; More et al., 2022). All features
were standardized by removing the mean and scaling to unit variance
in a cross-validation (CV)-consistent manner (More et al., 2021). We
utilized four machine-learning algorithms: relevance vector regression
(RVR) (Tipping, 2001), Gaussian process regression (GPR) (Rasmussen
and Williams, 2005), least absolute shrinkage and selection operator
(LASSO) (Santosa and Symes, 1986; Tibshirani, 1996), and kernel ridge
regression (KRR) (Vovk, 2013), in a nested 5-fold CV scheme repeated
5 times (Poldrack et al., 2020). The age prediction performance was
evaluated using the mean absolute error (MAE). To ensure that differ-
ences were not driven by factors other than the pipelines, we used the
same data (subjects and regions) and models for each pipeline.

The evaluation was performed in two set ups, intradataset, and
interdataset. In the interdataset evaluation, the models were trained
using two datasets and then used to predict the third hold-out dataset.
This analysis was performed for each pipeline separately.

2.5. Classification of pipelines

To confirm the existence of systematic differences in the outcomes
of the pipelines, we performed machine-learning-based predictive anal-
ysis based on the multivariate patterns of regional GMV. The idea
behind this analysis is that if a model can classify the pipeline produc-
ing a GMV image with a high accuracy, that would indicate that the
model learned systematic differences between the VBM pipelines. We
performed 10-class classification with subjects’ regional GMVs as fea-
tures and the pipelines as class labels. The features were standardized
by removing the mean and scaling to unit variance in a CV-consistent
manner (More et al., 2021) in two ways: (i) within each feature and
(ii) within each subject. The former is standard preprocessing, while we
implemented the latter to guard against trivial biases such as magnitude
shifts. We used a linear support vector machine (SVM) with the default
cost parameter of C = 1 in a 5-fold CV scheme repeated 5 times.

2.6. Individual-level identification

We examined the within-subject consistency of GMV patterns when
processed by different pipelines. To do so, we identified subjects across
pipelines using a nearest neighbor search. Using each pipeline as a
reference (query), we tried to match each subject with all the subjects
of each other pipeline (database). As an identification metric, we used
Pearson’s correlation between two subjects’ regional GMVs (Finn et al.,
2015; Amico and Goñi, 2018). Each subject was matched with the
subject from another pipeline with the highest correlation coefficient.
The identification performance between two pipelines was calculated
using the differential identifiability (Idiff) metric (Amico and Goñi,
2018).

2.7. Region-level comparison

To obtain a better understanding of regions driving the differences
between pipelines, we assessed the similarity in regional GMV estimates
from different pipelines using univariate statistical analysis. These anal-
yses were performed for subjects from all datasets combined as well
as separately for each dataset. We estimated similarity in regional
GMVs across subjects using Pearson’s correlation coefficient for all
possible pipeline pairs (in total 45). To investigate whether the size
of parcels affects the regional similarities, we calculated for each ROI
the median of correlation coefficients across the pairs of pipelines and
correlated it with the number of voxels per region (see Figure S.6 in
the Supplementary Material).

For all arithmetic operations on Pearson’s r values, first Fisher’s z
transform was applied, and then the result was transformed back to
Pearson’s r value.

2.8. Extrinsic evaluation of similarity between pipelines

The pipeline comparisons described above are intrinsic in nature.
Thus, although they provide important information regarding differ-
ences between the pipelines, they do not provide information regarding
the correctness of the pipelines in estimating the GMV. Such a correct-
ness assessment, although desirable, cannot currently be achieved due
to a lack of ground truth data. Instead, we compared the pipelines based
on their utility in capturing age-related information.

We first tested to what degree regional GMV estimates from each
pipeline reflect subjects’ age using univariate statistical analysis. To do
so, we computed Pearson’s r between the regional GMVs and subjects’
ages for each pipeline separately. The resulting p values were corrected
to control for the familywise error rate (Holm, 1979) due to multiple
comparisons, again for all data combined as well as separately for each
pipeline. We then performed an analysis of variance (ANOVA) to test
whether the means of the correlation coefficients were significantly
different.

Machine-learning-based analyses were performed using scikit-learn
(Pedregosa et al., 2011).
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3. Results

3.1. Preprocessing and data-templates

For CAT and fMRIPrep, less than 0.4% of all subjects failed the
preprocessing. For CAT, all outcomes passed our quality check. For
FSLVBM, less than 2% of the subjects failed the QC. For fMRIPrep-
FSL, there were slightly fewer subjects who failed QC than for FSLVBM.
A considerable number of subjects failed ANTs segmentation (13% for
eNKI, 5% for CamCAN and 12% for IXI). The QC results for the hybrid
ANTs-FSL pipeline were similar to those of ANTs. The final number of
subjects who qualified for further analyses was n = 741 for eNKI, 593
for CamCAN and 418 for IXI (total n = 1752).

The data-templates created by CAT and ANTs were sharper and
more similar to general templates than those created by FSLVBM
(templates are demonstrated in the Supplementary Material in Figures
S.1, S.2, S.3).

3.2. VBM pipelines produce different results

3.2.1. Brain age prediction
We first performed individual-level prediction of chronological age

using regional GMVs as features using four machine-learning algo-
rithms (Fig. 1). Within-dataset CV performance considerably varied
among pipelines (Fig. 1 (a)). The average performance across the learn-
ing algorithms and datasets was highest for the fMRIPrep-FSL general
template (MAE = 5.83), followed by the FSLVBM general template
(MAE = 6.17) and fMRIPrep-FSL data-template (MAE = 6.18).
CAT with the data-template and with the general template showed
similar performance of MAE = 6.37 and 6.39, respectively. The best
average performance across datasets was achieved by the fMRIPrep-
FSL general template with KRR (MAE = 5.59). ANTs performed the
worst on average. All four learning algorithms generally showed similar
performance for each pipeline (Supplementary Material Table S.2).

For cross-dataset predictions (Fig. 1 (b)), the best performance aver-
aged across datasets and models was again achieved by the fMRIPrep-
FSL pipelines, with the data-template (MAE = 6.21) performing
slightly better than the general template (MAE = 6.26) closely followed
by CAT general template (MAE = 6.45). Here, the best overall predic-
tions were again provided by the KRR algorithm. For the fMRIPrep-FSL
data-template and general-template MAE was 6.06 and 6.13, respec-
tively. For CAT, MAE = 6.32 and 6.42 with the general template
and data-template, respectively. ANTs-FSL-derived GMVs performed
the worst on average (Supplementary Material Table S.3).

3.2.2. Machine-learning analysis confirms distinct GMV patterns
The machine-learning approach classified the pipelines with a near-

perfect accuracy close to 100%. To rule out the possibility that this high
accuracy was driven by systematic differences, that is, some pipelines
over- or underestimating the GMV overall (which is indeed the case, see
Supplementary Material Figure S.7), we performed an additional anal-
ysis where each subject’s feature vector was z-scored independently, in
effect removing the overall differences in GMV estimates. This analysis
also resulted in high classification accuracy for all the datasets, close
to 100%. Detailed results are provided in the Supplementary Material
(Figure S.4).

3.2.3. Identification shows individual-level differences
Pipelines differing only in the template showed high differential

identifiability 43>Idiff>29. fMRIPrep-FSL and FSLVBM, both with data-
template, had the highest Idiff = 45, followed by the two ANTs pipelines
(Idiff = 43). The two CAT pipelines had the lowest mean Idiff values,
with the data-template pipeline being the lowest. FSLVBM with data-
template had the highest mean Idiff. Pipelines using FSL for registration
and modulation, with a general template, had a mean Idiff = 33.7.
The same pipelines with a data-template showed mean Idiff = 37.7.

ANTs-FSL and fMRIPrep-FSL, when both using a general template had
Idiff = 35 and when using a data-template Idiff = 34. Finally, ANTs and
ANTs-FSL, which differ in registration (and modulation), had Idiff = 29
when both used general templates and Idiff = 30 for data-templates
(Fig. 2).

3.2.4. Univariate analysis and region-wise similarity
To better understand whether some VBM steps drive differences

in the GMV estimates more than others, as well as to identify the
regions showing significant differences, we performed several univari-
ate statistical analyses. Some of the pipelines differ only in a single
step; therefore, by examining the similarity between them, insightful
conclusions can be extracted about the effect of this specific VBM
step. We observed that the overall agreement between the pipelines,
based on the median of the pairwise correlation values, varied across
the regions, while most of the regions showed only low-to-moderate
agreement (Fig. 3). Only the regions close to the cingulum, temporal
lobes and fusiform area showed relatively high agreement across the
pipelines (median r > 0.6). Most of the subcortical regions showed low
agreement (median r < 0.4), except the caudate (median r > 0.6). In the
cerebellum, all regions showed a median r < 0.6. Overall, these results
indicate a low agreement across the pipelines.

The regionwise similarity between pairs of pipelines differed sub-
stantially. While ignoring pipeline pairs that differ only in the template
(which are expected to be similar), maximum similarity was observed
between fMRIPrep and FSLVBM both using a data-specific template
(average r = 0.76), while the minimum similarity was between ANTs-
FSL using the general template and CAT with both templates (average
r = 0.306) (Fig. 4).

3.2.5. Comparison between ANTs and CAT
High similarities were observed between the CAT and ANTs

pipelines, despite differences in the steps, the order of the steps and
the algorithms for each step. The highest similarity was observed when
using the general templates (which themselves are different, as shown
in Table 1) with r = 0.72 followed by r = 0.66 between the ANTs data-
template and the CAT general template. A slightly lower similarity, of
r = 0.65 was estimated when both pipelines used the data-templates as
well as between the ANTs general template and the CAT data-template.

3.2.6. Effect of registration, segmentation, and brain extraction
In the subsequent analyses, we compared pipelines differing in

specific VBM steps to assess their specific impact.
Regionwise similarity between ANTs and ANTs-FSL that differed

only in registration (and therefore in modulation) using the general
template was moderate to low, average r = 0.51. When using data-
specific templates, the similarity was higher for all data (0.58) but also
for each of the three datasets (Fig. 5(a)).

ANTs-FSL and fMRIPrep-FSL share the same steps besides segmen-
tation. When using the general template, the average region-wise sim-
ilarity was 0,67, and for the data-specific templates, the corresponding
value was 0.68 (Fig. 5(b)).

FSLVBM and fMRIPrep-FSL differ in the brain extraction step.
When both pipelines utilized the default FSL template, they had a simi-
larity of 0.67. When the registration was performed using their respec-
tive data-specific template, the similarity increased to 0.76 (Fig. 5(c)).

Overall, similarities were higher when data-templates were used.
For ANTs compared to ANTs-FSL, the highest similarity values

were in subcortical areas, and the lowest similarity values were in the
ventrolateral and dorsolateral prefrontal cortices, especially when using
a general template (Fig. 5b(i)). ANTs-FSL and fMRIPrep-FSL showed the
least similarities in subcortical areas, the occipital lobe and prefrontal
cortex (Fig. 5b(ii)). Finally, FSLVBM and fMRIPrep-FSL had the lowest
similarity values in the subcortical areas, and the highest values were
in the temporal lobes, medial prefrontal cortex and cingulate gyrus
(Fig. 5b(iii)).
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Fig. 1. Age prediction for each pipeline. Blue, orange, green and red bars represent the averaged results of the three datasets per machine-learning algorithm, and the purple bars
show the mean across models and datasets. (a) Models trained and tested in the same dataset. Four models were tested using the three datasets in a nested K-fold cross-validation
scheme. (b) Age prediction for each pipeline when trained with two of the datasets and tested in the left-out one. Blue stars show the prediction performances on eNKI data, light
blue circles the performances on CamCAN data, and black crosses on IXI data. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

For each of the three datasets, similar figures separately with his-
tograms of regional correlation values and Nifti files with all regional
correlation values for the other pairs of pipelines can be found in the
Supplementary Material.

3.2.7. Pipelines with the same registration
ANTs-FSL and FSLVBM, which share only the registration step, had

a similarity of 0.59 for all data when using either the FSL default or
the data-specific template. The similarity for the eNKI dataset was 0.65
for both templates; for the CamCAN dataset, the similarity was 0.60 for
the general template and 0.63 for the data-template and 0.56 and 0.58
for IXI dataset, respectively.

3.2.8. General template versus data-specific template
The pipelines differing in the template, i.e., either general or a

data-template, showed varying degrees of similarity (Table 2). The
highest similarity was for CAT (r > 0.9), followed by ANTs (> 0.86)
in all three datasets. The similarity was low to moderate for the three
pipelines using FSL for registration and template creation steps (ANTs-
FSL, FSLVBM, and fMRIPrep-FSL). Specifically, ANTs-FSL had a mean
similarity across the three datasets of r = 0.71, fMRIPrep-FSL 0.66 and
FSLVBM 0.59.

Univariate analysis is in line with the identification Idiff results.
Pearson’s r between the Idiff values and the regionwise correlations
of pairs of pipelines was high, r = 0.841, p < 0.05 (more details in
Supplementary Material Figure S.12).

Table 2
The average values of regionwise correlation calculated across subjects for each pipeline
when using a general template and a data-template. The mean across datasets is also
presented, as well as the values from the same analysis performed with data from all
datasets. It is noteworthy that when all data were combined, there was not an overall
template created, but subjects were registered to the corresponding dataset template.

General template compared to the data-specific template
ANTs ANTs-FSL fMRIPrep-FSL FSLVBM CAT

eNKI 0.879 0.718 0.646 0.573 0.908
CamCAN 0.876 0.694 0.678 0.596 0.910
IXI 0.864 0.713 0.668 0.605 0.916
Mean 0.873 0.708 0.664 0.591 0.911
All data 0.859 0.699 0.662 0.585 0.894

3.3. Association with age

3.3.1. Correlation between age and regional GMV
We performed univariate analysis to assess how regional GMVs

capture aging-related information. CAT showed the highest average
correlation magnitude between regional GMVs and age irrespective
of the template used for all datasets, followed by fMRIPrep-FSL with
the general template. For CAT, the mean correlation across datasets
was r = *0.410 and *0.406 with a general template and data-specific
template, respectively (Table 3). The distribution of regional GMV-age
correlation values was more narrowly distributed for CAT and ANTs,
while they were more broadly distributed for pipelines using FSL (Fig. 6
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Fig. 2. Identification performance in terms of differential identifiability. We used Pearson’s coefficient to calculate similarity between subjects. The highest mean Idiff was found
for FSLVBM data-template followed by ANTs general template. The two CAT pipelines showed the lowest mean Idiff values.

Fig. 3. Median values of regional correlations calculated across subjects of all pairwise combinations of pipelines. The frontal lobe, subcortical regions and cerebellum showed
lower similarity. First, correlations between regional GMVs across subjects were calculated for each pipeline pair. The median of these 45 values was then calculated as an overall
agreement among the pipelines for each region.
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Fig. 4. Histograms of regional interpipeline similarity for all pairs of pipelines. For each pair, we calculated Pearson’s r coefficient for each region across all subjects. We used
the Holm-Bonferroni method to correct for multiple comparisons. The histograms shown consist of those regions that survived the multiple comparison (p < 0.05).

Table 3
Pearson’s r-values were calculated between age and all regional GMVs across subjects.
r-values were transformed to Fischer’s z averaged and transformed back to r-values. CAT
with the general template and with the data-template appears to preserve age-related
information better than the other pipelines, followed by fMRIPrep-FSL and ANTs. There
is high consistency between datasets, with CamCAN showing a higher relation to age
for those pipelines that use FSL for registration and CAT.
General templates

ANTs ANTs-FSL fMRIPrep-FSL FSLVBM CAT

eNKI *0.258 *0.182 *0.324 *0.155 *0.388
CamCAN *0.264 *0.197 *0.411 *0.224 *0.425
IXI *0.274 *0.163 *0.337 *0.151 *0.416
Mean *0.265 *0.181 *0.357 *0.177 *0.410
All data *0.253 *0.188 *0.357 *0.168 *0.381

Data-specific template
ANTS ANTs-FSL fMRIPrep-FSL FSLVBM CAT 12

eNKI *0.262 *0.188 *0.291 *0.145 *0.385
CamCAN *0.260 *0.193 *0.365 *0.202 *0.421
IXI *0.270 *0.157 *0.298 *0.140 *0.413
Mean *0.264 *0.179 *0.318 *0.162 *0.406
All data *0.253 *0.174 *0.319 *0.155 *0.370

(a)). Overall, the regional GMV-age correlation was markedly different
between the pipelines (Fig. 6).

One-way ANOVA revealed a statistically significant difference in the
average r-coefficients of regional GMV and age between at least two
pipelines for all datasets (Supplementary Material Table S.5).

3.3.2. Comparison of regional age information between pipelines
The regional GMV-age correlation values not only differed but also

showed opposing effects (Fig. 7). In other words, some regions showed
a positive correlation with age in one pipeline but a negative corre-
lation in another pipeline (see Supplementary Material Figures S.16,
S.17 and S.18). In particular, this was the case for FSLVBM and ANTs-
FSL, which contained many regions with a positive correlation with
age. Strikingly, the same two pipelines also exhibited a large number
of regions with opposing correlations with age when using a different
template.

When using all data, CAT had n_rois = 6 ROIs with a positive corre-
lation to age when using either template. fMRIPrep-FSL had n_rois =27

with the general template and 22 with the data-template, and ANTs had
n_rois = 56 for both templates. ANTs-FSL and FSLVBM had n_rois = 218
and 280 regions positively correlated to age when using a general tem-
plate and 184 and 226 regions when using a data-template, respectively.
Two regions in the thalamus showed a positive correlation with age for
all pipelines. In general, the regions with a positive correlation with age
for all pipelines were mostly subcortical (see Fig. 7).

3.3.3. Effect of parcel size
We examined whether parcel size was associated with the agree-

ment among the pipelines and with the agreement between ROIs and
age. We observed no or marginal association between the overall
similarity among the pipelines (calculated as the median of agreement
between pipeline pairs) and parcel sizes (Pearson’s correlation, all data:
r = *0.08, p = 0.006, eNKI: r = *0.02, p = 0.51, CamCAN: r = *0.11, p =
0.0002, IXI: r = 0.07, p = 0.022) (Supplementary Material Figure S.19).

Correlation values between parcel size and the corresponding re-
gional correlation values to age for each pipeline varied between
pipelines as well as between datasets. The highest correlation was for
CAT, with r = *0.145 when using the general template and r = *0.134
with the data-template (both p < 0.05). ANTs showed the next closest
relation between parcel size and regional association with age, with
r = *0.105 when using a general template and r = *0.101 when using a
data-template (both p < 0.05). Those marginal negative correlations in-
dicate that the fewer voxels are in an ROI, the better the relation of this
ROI to age. All other correlation values were rather small, indicating
that overall, the parcel sizes did not impact our results (Supplementary
Material, for all data combined Figure S.23, eNKI Figure S.20, CamCAN
Figure S.21 and IXI Figure S.22).

4. Discussion

‘‘Which tool shall I use to perform my VBM analysis?’’, this is one
of the very first questions that a researcher asks before starting a VBM
study. The choice is often based on the literature or familiarity or
recommendations. The current lack of an in depth comparison between
VBM pipelines, the impact of the main steps on the outcome, and
their utility precludes informative choice. Sparked by that, we com-
pared 10 VBM pipelines derived from widely used tools on three large
datasets covering the adult lifespan, acquired in different scanners and
protocols. Two of the pipelines consisted of VBM steps from different
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Fig. 5. (a) Histograms of regionwise correlation values between selected pairs of pipelines for all datasets. The r value represents the average correlation of all regions (that
survived the Holm-Bonferroni correction) after transforming them to Fisher’s z and then reverse transformed to r. The pipeline pairs are categorized according to the template they
use in the registration step. (i) Correlation between ANTs and ANTs-FSL, which differ only in the registration step. (ii) ANTs compared to fMRIPrep-FSL. These two pipelines differ
only in the segmentation step, as fMRIPrep utilizes FSL-based segmentation. Segmentation imposes fewer differences than registration, (iii) FSLVBM and fMRIPrep-FSL only differ
in the brain extraction step. This step has a similar effect to segmentation when a general template is used and higher similarity when a data-template is used. The data-specific
template comparisons are also provided here for convenience reasons, although it should be noted that the template creation steps may differ for the pipeline pairs, resulting in
the usage of different data-specific templates. (b) Brain maps with regional similarity of selected pairs of pipelines calculated using all data. Similarity values are expressed in
Pearson’s r and were corrected using the Holm-Bonferroni method. Light blue represents regions without a significant association (p> 0.05) and blue represents regions with a
negative correlation (r < 0). (i) High similarity in subcortical areas and increased differences in cortical areas, especially when using a general template. (ii) Different segmentations
seem to have affected the cerebellum, subcortical areas and the posterior and anterior areas of the same axial level for both templates. (iii) Brain extraction when using a general
template caused more differences in the subcortical areas, superior frontal and the upper part of the cerebellum. It is noteworthy that negative values appear in the superior frontal
lobe. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

tools. Our experiments were designed to facilitate a user-centric and
systematic evaluation, which allows us to derive robust conclusions.
Moreover, it permitted the examination of the effect of template use,
i.e., general and data-template, as well as the effect of individual VBM
steps.

Overall, we made the following observations based on analysis of
the GMV estimates from different perspectives. The differences in indi-
viduals’ brain-age predictions confirmed that different VBM pipelines
produce different GMVs (Fig. 1, Tables S.2 & S.3). The systematic
differences between the pipelines were further confirmed by the high
accuracy when predicting the pipelines using their GMVs (Figure S.4).
A detailed univariate analysis of across-subject correlation (Fig. 4)
and identification using the subject-specific multivariate GMV pattern
(Fig. 2) showed that the individual steps of the VBM process as well as
the choice of the template lead to the differences in the GMV estimates
(see also Fig. 5 and Table 2). Differences in GMV in turn impact the way
age is reflected as we saw in univariate analysis correlating regional
GMV with age (Fig. 6 and Table 3).

First, we sought to establish whether the pipelines indeed lead to
different results in applications. To this end, we performed predictive
analysis using regional GMV as features and four machine-learning
models commonly used in brain-age prediction. Individual-level age
prediction showed variability in prediction accuracy (Fig. 1), similar

to what has been previously reported for voxel-level analysis and using
CAT and FSL-based pipelines (Zhou et al., 2022). Our age-prediction
accuracy for CAT and fMRIPrep-FSL are comparable to previous re-
ports, considering our dataset size and the wide age range (Eickhoff
et al., 2021; Cole et al., 2017a). To establish whether the differences in
the pipelines are systematic, we performed classification analysis. The
near-perfect classification performance in the prediction of pipelines
(Figure S.4) provides evidence for systematically distinct outcomes
of the pipelines, which could be learned by the machine-learning
algorithm and is in line with previous research (Callaert et al., 2014;
Popescu et al., 2016; Rajagopalan and Pioro, 2015). Importantly, re-
moving overall GMV differences by standardizing each feature vector
also provided similarly high accuracy. Based on these results, even
though the pipelines differ in seemingly trivial ways, such as using
different templates or segmentation algorithm, we can conclude that
they produce diverging GMV patterns.

Taken together, these results suggest that combining data processed
with different pipelines might not be fruitful. Data harmonization
methods (Pomponio et al., 2020; Radua et al., 2020), although designed
for tackling cross-site differences, can also be explored to eliminate
cross-pipeline differences. To this end, we performed two preliminary
analyses. First, we harmonized data across all the 10 pipelines and per-
formed pipeline prediction analysis similar to 2.5. The pipelines could
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Fig. 6. Correlation between regional GMV and age across subjects for the eNKI dataset. CAT had the fewest regions with a positive correlation with age (n=6 for the general
template and 7 for the data-template). A few more regions with positive correlations had ANTs (n = 27, n = 31) and fMRIPrep-FSL (n = 29 and 31). ANTs-FSL and FSLVBM have
significantly higher numbers of regions with positive correlations as well as regions with nonsignificant correlations (p > 0.05). Regions with positive or nonsignificant correlations
appear transparent in the brain images. For ANTs, the cerebellar regions and regions of cingulate gyri and limbic lobes. ANTs-FSL and FSLVBM demonstrated the most regions
with a positive correlation with age. The cerebellum in FSLVBM shows a very small association with age, while in ANTs-FSL, cerebellar regions have more medium to high r
values. Finally, fMRIPrep-FSL and CAT have small r values in the superior parietal and occipital lobes and medium to high r values in the frontal parts of the brain.

Fig. 7. Pearson’s r values between regional GMV and age calculated across subjects for selected pipelines plotted against the same measurements for other pipelines. The upper
left and lower right quadrants of each subplot contain those regions that have correlations to age with opposite signs/directions between the two pipelines. ANTs-FSL and FSLVBM
have the most ROIs with positive correlations to age. Here, we selected a few pipelines that cover the spectrum of the main tools we used and better illustrate how the same
regions in different pipelines can have opposite relations to age. All pipeline combinations can be seen in Figure S.15 in the Supplementary Material.
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not be predicted with high accuracy after harmonization, however we
also observed a bias towards specific pipelines (Supplementary Material
Figure S.5). Second, we harmonized the three datasets processed with
three different pipelines and performed leave-one-site-out age predic-
tion analysis similar to Section 2.4. This resulted in a higher MAE
(MAE = 8.5 using a GPR model, Supplementary Material Table S.4)
compared to when using a single preprocessing pipeline (MAE = 6.29-
8.36 using a GPR model, Table S.3). In addition, we would like to note
that harmonization can perform better when the biological variance
of interest is explicitly preserved, such as age as the target in age
prediction analysis. However, this means that the target value must be
also available for the test data. This setup leads to data leakage when
performing CV and cannot be applied on real test data, considering
also that data from the test site or pipeline is needed for learning
a harmonization model (in our analysis we harmonized all the data
together). Thus, in its current form this approach is not suitable for ML
applications. These results suggest that applying data harmonization
methods in this context is challenging and needs further investigation.

The low to moderate identification performance and its variability
across pipelines suggest that individual-level characteristics are, to
a certain degree, captured differently by different pipelines (Fig. 2).
This result has important implications for data sharing and privacy
issues (White et al., 2022). As we show, with regionwise GMV data it
is difficult to identify subjects when processed with different pipelines.
Thus, when sharing such data, for instance, to perform multicenter
analysis, it is important to keep the VBM pipeline consistent, including
the template used.

Univariate analysis showed limited ROI-level similarity across
pipelines, with an average regional similarity of r = 0.51 for pipelines
using a general template. FSLVBM (using BET) and fMRIPrep-FSL
(using ANTs brain extraction) showed high similarity, especially when
a data-template was used (average r = 0.76) (Fig. 5 (c)). When using
the general template, the average similarity decreased but remained
relatively high (r = 0.67). This suggests that differences in brain
extraction are overshadowed by the subsequent steps. ANTs-FSL and
fMRIPrep-FSL pipelines that differ mainly in segmentation (and the a
priori template in brain extraction) showed relatively high agreement
(r = 0.67 general template; r = 0.68 data-template), although slightly
lower than what we show for brain extraction (Fig. 5 (b)).

Differences between registration algorithms have been reported (Ou
et al., 2014). Our results are in line with this previous report. The
registration step, evaluated as a comparison between ANTs and ANTs-
FSL, had medium-to-high impact, with average agreement between
these pipelines ranging across datasets, from r = 0.48 to r = 0.53 and
r = 0.57 to r = 0.6 for general and data-template, respectively (Fig. 5
(a)).

The impact of using different registration templates, general tem-
plate versus data-template, was examined using pipelines that differ
only in the template. This resulted in a wide-ranging agreement from
r = 0.59 to r = 0.92 (Table 2). ANTs and CAT create data-templates
that are very similar to their respective general templates — likely due
to their exhaustive registration algorithms and the iterative processes
together with the fact that their template creation processes are initial-
ized with a general template. Overall, the differences in data-template
creation algorithms and the ensuing data-templates led to substantial
differences across the tools. This is in agreement with previous research
reporting a small impact of the template when using CAT (Haynes
et al., 2020). Effectively, using a data-template imposes higher simi-
larity between the subjects’ images, which we also observed for some
pipelines (Fig. 4). Despite this high similarity, machine-learning-based
analysis could reliably distinguish the pipelines. Univariate analysis
of regionwise GMV-age correlations as well as age prediction were
in favor of using a general template. Using subjects’ data to create a
data-template and then registering the same subjects to it is a circular
process unless an independent subset is used for template creation;
however, given the limited data, this is often hard to implement in

practice. The latter, in combination with the high computational de-
mands of the template-creation process, are in favor of using a general
template.

Although ANTs and CAT share no common modules, they showed
medium to high similarity (for all data sets ranged from r = 0.65
to r = 0.72; maximum was for r = 0.74 for the eNKI). According
to the impact of individual steps in the final GMV, as shown in our
pipeline comparison, CAT and ANTs are expected to yield differing
GMV estimates unless there are similarities in their internal algorithmic
mechanism, which seems to be the case. In fact, exhaustive registration
to similar templates can lead to similar outcomes. ANTs-FSL with
the general template and CAT (both templates) showed the lowest
regionwise similarity across datasets. However, in our opinion, the low
similarity between CAT, with either template, and FSLVBM using a
general template needs special attention (Fig. 4 and Supplementary
Material, eNKI Figure S.8, CamCAN Figure S.9 and IXI Figure S.10).
The reason is that they are both off-the-shelf pipelines and widely
used in VBM projects. Regionally, the highest differences were present
in the frontal lobe, superior parietal lobule and subcortical regions,
specifically with regards to their association to age (Supplementary
Material Figures S.15, S.16, S.17, S.18) Such differences enhance the
risk of emanating different or even sometimes contradictory conclu-
sions. From the projection of similarities between pipelines in the brain
(Supplementary Material nifti files), it appears that high correlation
values are not located in specific regions, nor is a specific pattern
formed. However, segmentation and brain extraction seem to affect
stronger subcortical and cerebellar areas and the superior frontal and
occipital lobes. When comparing the registrations of ANTs and FNIRT,
widespread differences appear in cortical areas and in the cerebellum
(Fig. 5(b)).

The identification results (Fig. 2) were very similar to the pairwise
similarity estimated using Pearson’s correlation (Fig. 4). The agreement
between the two methods was high (Pearson’s correlation between pair-
wise similarity and Idiff, r = 0.84), and when using general templates,
identification and univariate analysis were almost the same (r = 0.955,
Supplementary Material Figure S.12). This agreement between two
different methods to assess similarity between the pipelines provides
confirmatory validity to our findings.

It is important to note that, mostly for brain extraction but also
for segmentation and registration algorithms, there are important dif-
ferences between the datasets (Fig. 5). This indicates that properties
such as the intensity range of the images can influence the results in
different ways, e.g., the quality of segmentation varies across different
scanning parameters (Rao et al., 2022; Kruggel et al., 2010; Valverde
et al., 2015).

By using three large datasets, we aimed to cover a wide range of
MRI vendors as well as scanning parameters and settings. Different
scanners were used not only across datasets but also within the same
dataset, strengthening our results and conclusions independent of the
datasets’ idiosyncrasies.

The fMRIPrep-FSL combination showed the second highest correla-
tion with age and the best brain-age predictions. This is not surprising
given the nonexhaustive registration of FSL, which together with deep
neural networks provides accurate brain-age prediction (Peng et al.,
2021). It is noteworthy that we used all subjects from the eNKI sam-
ple without separating the healthy part of the cohort as is usually
done. When inspecting the age predictions of only healthy subjects,
in intrasite predictions, and a mix of healthy and nonhealthy subjects,
cross-site, separately, we did not observe a significant difference (see
Supplementary Material Table S.2 and Table S.3). This can be ex-
plained by the fact that the nonlinear transformations wipe-out small
differences compared to linear registration but also by the fact that
the templates we used are based on healthy populations. In the age-
prediction CAT showed performance similar to fMRIPrep-FSL but lower
than what has been previously reported (Jonsson et al., 2019). How-
ever, this difference can be driven by the machine-learning algorithms
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and the feature space employed. These results are in line with the
univariate analysis we performed, where the same two pipelines had
the highest (anti-) correlation with age (Fig. 6). In addition, fewer
ROIs showed a positive correlation with age for CAT and fMRIPrep-
FSL than for other pipelines, which is in line with known GM atrophy
with age (Farokhian et al., 2017b; Gennatas et al., 2017; Koops et al.,
2020). Taken together, our results are in favor of CAT and fMRIPrep-
FSL in regard to aging-related studies. Although some recent brain-age
applications have shown that linear registration is preferable (Franke
et al., 2010; Peng et al., 2021), we decided to compare the whole VBM
process using nonlinear registration. This choice was made so that we
could approach the topic via a common space, permit the use of a
parcellation atlas and facilitate the interpretability of the results.

The user-centric approach we followed in this project does not allow
for an extensive evaluation of the potentials of the tools we used. CAT,
ANTs, but to a certain degree also FSLVBM potentially can be tuned to
provide more accurate brain-age predictions or regional associations to
age. However, such an investigation is out of the scope of this work.

To summarize, our results show that all steps of a VBM pipeline have
a considerable impact on the GMV estimates, and therefore, different
pipelines produce different results. These differences in GMV estimates
are reflected in univariate as well as multivariate analyses. The choice
of registration has the highest impact, followed by segmentation and
brain extraction algorithm. In the specific case of age-prediction, we
recommend the combination of ANTs for brain extraction and FSL
for segmentation (as implemented in fMRIPrep) and FSL nonlinear
registration or CAT 12.8, with the latter having the advantage of being
available as an off-the-shelf pipeline. The option of using a general
template is preferred for age-related studies and likely other studies
with a similar set up, especially when analyzing scans from multiple
datasets.
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a b s t r a c t 
Using machine-learning tools to predict individual phenotypes from neuroimaging data is one of the most promis- 
ing and hence dynamic fields in systems neuroscience. Here, we perform a literature survey of the rapidly work 
on phenotype prediction in healthy subjects or general population to sketch out the current state and ongoing 
developments in terms of data, analysis methods and reporting. Excluding papers on age-prediction and clinical 
applications, which form a distinct literature, we identified a total 108 papers published since 2007. In these, 
memory, fluid intelligence and attention were most common phenotypes to be predicted, which resonates with 
the observation that roughly a quarter of the papers used data from the Human Connectome Project, even though 
another half recruited their own cohort. Sample size (in terms of training and external test sets) and prediction 
accuracy (from internal and external validation respectively) did not show significant temporal trends. Predic- 
tion accuracy was negatively correlated with sample size of the training set, but not the external test set. While 
known to be optimistic, leave-one-out cross-validation (LOO CV) was the prevalent strategy for model valida- 
tion ( n = 48). Meanwhile, 27 studies used external validation with external test set. Both numbers showed no 
significant temporal trends. The most popular learning algorithm was connectome-based predictive modeling 
introduced by the Yale team. Other common learning algorithms were linear regression, relevance vector regres- 
sion (RVR), support vector regression (SVR), least absolute shrinkage and selection operator (LASSO), and elastic 
net. Meanwhile, the amount of data from self-recruiting studies (but not studies using open, shared dataset) was 
positively correlated with internal validation prediction accuracy. At the same time, self-recruiting studies also 
reported a significantly higher internal validation prediction accuracy than those using open, shared datasets. 
Data type and participant age did not significantly influence prediction accuracy. Confound control also did not 
influence prediction accuracy after adjusted for other factors. To conclude, most of the current literature is prob- 
ably quite optimistic with internal validation using LOO CV. More efforts should be made to encourage the use 
of external validation with external test sets to further improve generalizability of the models. 

Introduction 
Individual traits prediction (e.g. cognition abilities, personality 

traits, emotional feeling, and motor performance) using neuroimaging 
data is an upcoming hotspot in cognitive neuroscience ( Shen et al., 2017 ; 
Sui et al., 2020 ). The term prediction refers to the ability to predict out- 
comes successfully in data sets other than the original one used to con- 
struct the model ( Poldrack et al., 2020 ). It is better for translational or 
prediction purposes than the traditional univariate brain mapping anal- 
ysis, as the latter focused on within-sample fit of correlational relation- 
ships that tends to be overfitting and not generalizable ( Poldrack et al., 

< Corresponding authors at: Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong 
Kong, Hong Kong, China (Andy Wai Kan Yeung); Institute of Neuroscience and Medicine, Brain & Behaviour (INM ‐7), Research Centre Jülich, Jülich, Germany 
(Simon B. Eickhoff) 

E-mail addresses: ndyeung@hku.hk (A.W.K. Yeung), Simon.Eickhoff@uni-duesseldorf.de (S.B. Eickhoff) . 

2020 ). The overall scheme usually begins with collecting structural or 
functional (resting-state or task-induced) neuroimaging data and per- 
sonal trait measures from a large sample. Then the neuroimaging data 
should be preprocessed and entered into a machine-learning model. 
The model will be trained to find out the link between the neuroimag- 
ing data (brain features) and the personal traits. Finally, the trained 
model can be generalized to predict the traits in a new sample. Its ac- 
curacy can be computed by comparing with the ground truth (reality) 
( Eickhoff and Langner, 2019 ). In short, there are four stages: model 
building, internal validation, external validation, and generalizability 
and transposability ( Bzdok and Ioannidis, 2019 ). There are many ap- 

https://doi.org/10.1016/j.neuroimage.2022.119275 . 
Received 28 February 2022; Received in revised form 27 April 2022; Accepted 29 April 2022 
Available online 2 May 2022. 
1053-8119/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 



A.W.K. Yeung, S. More, J. Wu et al. NeuroImage 256 (2022) 119275 
proaches to individual traits prediction. One famous approach is called 
the connectome-based predictive modeling (CPM) approach, developed 
by ( Finn et al., 2015 ), the term CPM established by ( Rosenberg et al., 
2016 ), its protocol published by ( Shen et al., 2017 ), codes deposited 
at https://github.com/YaleMRRC/CPM . Moreover, ( Finn et al., 2015 ) 
introduced the now widely used Shen 268 atlas, which was produced 
based on the parcellation method and the 100-, 200-, and 300-node at- 
lases introduced by ( Shen et al., 2013 ). In that study by Rosenberg et al., 
it was reported that functional connectivity derived from task-induced 
functional magnetic resonance imaging (fMRI) could be used to train 
a model that predicted a previously unseen individual’s performance in 
sustained attention and even symptoms of attention deficit hyperactivity 
disorder based on his/her resting-state fMRI signals ( Rosenberg et al., 
2016 ). The predictive modeling field in neuroscience has seen a rapid 
growth and accumulated many papers since then. 

Of course, there are a number of factors that affect the validity or 
generalizability of predictive models in neuroimaging, spanning from 
sample size, processing, features, learning, to validation. To begin with, 
it was recommended that a dataset of over 100 individuals should 
be used for predictive modeling ( Scheinost et al., 2019 ). Data from 
( He et al., 2020 ) even suggested that 500–1000 subjects should be 
the minimum. Small sample sizes would lead to underestimated er- 
rors and vibration effects, meaning that methodological choices could 
have a drastic impact on the analysis outcome based on few samples 
( Varoquaux, 2018 ). Subject recruitment and financial constraints could 
be potential issues, and might be circumvented by the use of large, open, 
shared datasets as training or test set. During data processing, potential 
confounding factors should be accounted for, such as physiological and 
head motion artifacts ( Murphy et al., 2013 ). At the stage of features in- 
put, one needs to consider what data to be entered. For instance, for 
a model that predicts behavior based on brain connectivity data, con- 
nectomes from multiple sources could improve the prediction accuracy 
compared to a single connectome ( Gao et al., 2019 ). Finally, external 
validation is the best practice, meaning testing the model with an inde- 
pendently collected (external) data set ( Scheinost et al., 2019 ). Out-of- 
sample generalization and later cross-validation (CV) is less ideal, as the 
portion of the sample taken out from the same dataset will inevitably 
share similar subject and imaging features with the training set and cre- 
ate bias. Since generally it is relatively difficult to obtain a separate test 
set, doing a CV has been a popular approach, meaning that the whole 
dataset is divided into subsets that train and test the model respectively. 
CV is generally fine, but it should be noted that CV in small samples may 
render the models too optimistic ( Whelan and Garavan, 2014 ). 

In this work, we performed an updated general literature survey on 
the study design and analytic pipeline of the individual traits prediction 
among healthy individuals or general population (not purely clinical), 
and aimed to evaluate the published studies on individual traits pre- 
diction based on regression, to reveal if their generalizability could be 
undermined by the caveats mentioned above. 
Methods 
Literature search strategy 

PubMed and Web of Science Core Collection online databases were 
queried on 16 December 2021 with the following search string: ((("ma- 
chine learning") OR ("predict < model < ") OR ("support vector machine < ") 
OR ("LASSO < ") OR ("elastic net < ") OR ("random forest < ") OR ("cross 
validat < ") OR ("artificial intelligen < ")) AND ((brain behavior < ) OR (brain 
behavior < ) OR (neuromarker < ) OR (brain biomarker < ) OR ("individ- 
ual difference < "))). The search covered “all fields ” for PubMed and “ti- 
tle/abstract/keywords ” for Web of Science. We also performed refer- 
ence tracing from the yielded publications and previous review articles. 
A total of 7153 publications were identified after removing duplicates. 
The full text of these them were inspected and publications were ex- 
cluded due to the following reasons: irrelevant (e.g. within-sample cor- 

relation instead of predictive modeling; n = 6018), classification instead 
of regression (e.g. sex classification; n = 692), involved patients only 
( n = 154), review/opinion paper ( n = 121), method papers ( n = 17), 
age prediction instead of individual traits ( n = 43), conference abstract 
without full text ( n = 0), and unspecific phenotype ( n = 0). In the end, 
108 articles entered the survey (Supplementary Table 1). For complete- 
ness, a list of excluded papers could be found in Supplementary Table 
2. 

To assess the reporting details and identify patterns/trends among 
these papers, we examined the content of them carefully. The sur- 
veyed contents involved sampling, processing strategy, feature selec- 
tion, learning algorithm, and validation. Sample size is a critical as- 
pect of the papers, as smaller samples may be underpowered and over- 
fit the models, and hence producing false positives ( Varoquaux et al., 
2017 ). Meanwhile, papers dealing with large open-source neuroimaging 
datasets should report the dataset details well enough, as each dataset 
has its unique demographic factor, imaging and behavioral measures 
( Horien et al., 2021 ). For processing, accounting for confounds such as 
head motion is an important step in modeling, as their presence may 
make the model less meaningful ( Rao et al., 2017 ). Other details of 
processing such as dimensionality reduction, feature selection, learn- 
ing algorithm, hyperparameter tuning, and validation strategy were also 
evaluated and recorded as these are important for fellow researchers to 
replicate their results. Finally, prediction accuracy was noted to evalu- 
ate the model performances. Because of these rationales, the parameters 
recorded for each study were listed in the following paragraph. 
Parameters recorded 

The following parameters were recorded for each study: sample size 
(training set and test set), data source, type of subject (minor vs adult), 
amount of data for each subject (number of volumes), input data (e.g. 
what kind of connectome and matrix size), data type (task, rest, natu- 
ralistic, vs structural), target phenotype (e.g. intelligence), processing 
strategy, reference to the Yale approach (connectome-based predictive 
modeling, c.f. ( Finn et al., 2015 ; Rosenberg et al., 2016 ; Shen et al., 
2017 )), brain atlas referred to, confounding variables accounted for (e.g. 
head motion), dimensionality reduction if relevant, feature selection, 
learning algorithm, hyperparameter tuning, validation strategy (e.g. ex- 
ternal validation or CV), and prediction accuracy (from internal and 
external validation, respectively). The temporal trends of the statistics 
were tested across studies if they were continuous variables (e.g. pre- 
diction accuracy), and across years if they were categorical (e.g. ratio of 
studies using external test set). Additional analyses were performed for 
fMRI and structural MRI (sMRI) studies separately. 
Results 
General bibliographic information 

The annual publication count showed a sharp increase in year 2018 
( Fig. 1 A). Prior to 2018, there were fewer than 6 papers published per 
year. 
Prediction accuracy 

In brief, 81 studies reported Pearson r as the prediction accuracy 
value from internal validation, and 16 studies reported so from external 
validation. The accuracy from internal validation ranged from 0.098 to 
0.978, whereas the accuracy from external validation ranged from 0.220 
to 0.736. Though the prediction accuracy from either validation method 
seemed to show a slight decreasing trend by year ( Fig. 1 B), no signifi- 
cant linear correlation was observed (Pearson correlation test, internal 
validation: n = 81, r = * 0.201, p = 0.071; external validation: n = 16, 
r = * 0.482, p = 0.059). For the studies that did not report any Pearson r 
as the prediction accuracy, Spearman rho was the most popular metric 
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Fig. 1. Graphical summary of the surveyed articles. (A) Annual publication count and studies using external test set. (B) Prediction accuracy of models using internal 
validation (IV) and external validation (EV) respectively. (C) Sample sizes of training set and external test set. Studies published in 2015 or before were not plotted 
as they did not recruit external test set. (D) Proportion of studies mentioning that they followed the Yale approach ( “connectome-based predictive modeling ” [CPM], 
e.g. from ( Finn et al., 2015 ; Rosenberg et al., 2016 ; Shen et al., 2017 )). (E) The use of leave-one-out cross-validation (LOO CV). 
( n = 11). Other reported metrics included standardized mean squared 
error, mean absolute error (MAE), root mean square error (RMSE), pre- 
diction R 2 , and adjusted R 2 . 
Sample size 

Before year 2016, the few surveyed studies only recruited subjects 
for their training set, without external test set or involvement of open, 
shared dataset. The mean sample size of their training set was 64, 25.5, 
40, 49, and 185.5 for year 2007, 2010, 2013, 2014, and 2015, respec- 
tively. Fig. 1 C illustrated the sample size since year 2016. For training 
set, self-recruiting studies had a mean sample size of 108 during the pe- 
riod of 2016–2021, whereas studies using open, shared datasets had a 
much larger mean sample size of 1140. For test set, however, the former 
group and the latter group had a similar mean sample size (251 vs 278). 

The sample size of self-recruiting studies did not show significant lin- 
ear correlation with year (Pearson correlation test, training set: n = 52, 
r = 0.078, p = 0.581; test set: n = 14, r = 0.158, p = 0.590). The same 
held true for studies using open, shared datasets (training set: n = 45, 
r = 0.106, p = 0.489; test set: n = 12, r = * 0.093, p = 0.773). 
Selection of data source and data type 

In terms of data source of the training set, 61 studies recruited their 
own subjects, whereas the Human Connectome Project (HCP) was used 
by 21 studies ( Table 1 ). HCP may refer to various versions of the HCP 
dataset, such as “unrelated 100", S500, S900, and S1200. Readers should 
be aware that the more recent datasets (e.g. S1200) not only had a larger 
sample size, but also contained updated data on family structures of the 
subjects (e.g., relationships as twins or non-twin siblings, but excluding 
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Table 1 
Data sources of the training set. 
Data source Number of studies 
Recruited subjects 61 
HCP S1200 6 
HCP S900 6 
HCP S500 4 
ABCD 4 
PNC 4 
HCP (unclear version) 3 
SLIM 3 
Previously trained model 2 
HCP "unrelated 100 ” 2 
UESTC 2 
UKB 2 

ABCD, Adolescent Brain Cognitive Development Study. HCP, Human Con- 
nectome Project. PNC, Philadelphia Neurodevelopmental Cohort. SLIM, SLIM 
dataset from Liu et al. (2017) . UESTC, University of Electronic Science and 
Technology of China. UKB, UK Biobank. The data sources below were each 
used once and hence not listed in the table: ABIDE-II (Autism Brain Imaging 
Data Exchange), ADNI-2 (Alzheimer’s Disease Neuroimaging Initiative), ADNI- 
GO, AHAB-2 (Adult Health and Behavior project —Phase 2), ATR dataset from 
Yamashita et al. (2015) , BBP (Behavioral Brain Research Project of Chinese Per- 
sonality), BCAS (Brain and Cognition Aging Study), CamCAN (Cambridge centre 
for Ageing and Neuroscience), CBDC (Cognition and Brain Development in Chil- 
dren), DIAMOND (Dimensions of Affect, Mood, and Neural Circuitry Underlying 
Distress Study), Duke Neurogenetics Study, GUSTO (Growing Up in Singapore 
Towards healthy Outcomes), IMAGEN dataset from Schumann et al. (2010) , 
NKI-RS (Nathan Kline Institute Rockland Sample), OASIS-3 (Open Access Series 
of Imaging Studies), PING (Pediatric Imaging, Neurocognition, and Genetics), 
PIP (Pittsburgh Imaging Project), TTC (Tokyo TEEN Cohort Study), UNC Early 
Brain Development Study. 
Table 2 
Frequency of common types of input data. 
Input data Frequency (n) 
Resting state functional connectivity (RSFC) connectome 32 
Both task-induced FC and RSFC connectome 15 
Task-induced FC connectome 10 

For other less common types of input data, please refer to Supplementary Table 
1 for the details of each study. 
birth order). Therefore, the umbrella term HCP did not necessarily im- 
ply an identical sample used across the studies. Among the 21 studies 
using HCP data, S1200 was the most popular dataset ( Table 1 ). Mean- 
while, different target phenotypes were investigated, with some of the 
recurring ones being fluid intelligence/intelligence quotient ( n = 15), 
attention ( n = 12), and memory ( n = 11). 

Regarding input data, resting state functional connectivity (RSFC) 
connectome was much more common than task-induced FC connec- 
tome or the combination of both ( Table 2 ). The brain atlas used for 
connectome data were also diverse, with the canonical Shen 268 atlas 
( Finn et al., 2015 ; Shen et al., 2013 ) being most prevalent ( Table 3 ). 
Dealing with confounding factors during data processing 

Over half of the studies (61 out of 108) did not control for potential 
confounding factors such as age, sex, head motion. Studies controlled 
for them mainly entered them as regressors in the regression models. 
Varied feature selection and learning 

Thirty-two papers (32.3%) published since 2016 followed the Yale 
approach pioneered by Finn et al. (2015) mentioned in the Introduction, 
which achieved a brain-behavior prediction by means of an approach 
called connectome-based predictive modeling (CPM) ( Fig. 1 D). In year 
2020, almost half of the studies followed this approach. It basically in- 

volved a linear regression and the feature selection method was typically 
choosing FCs with significant correlation (e.g. p < 0.01) with the pre- 
dicted measure [and then the sums of selected positive or negative edges 
(the summary measure), is used as input features for linear regression]. 
Other papers had very diverse feature selection methods, with two recur- 
ring methods including feature selection from regions-of-interest (ROIs, 
n = 4) and principal component analysis (PCA, n = 2). Some common 
learning algorithm used by these non-CPM papers were multiple linear 
regression, relevance vector regression (RVR), support vector regression 
(SVR), partial least squares regression (PLSR), least absolute shrinkage 
and selection operator (LASSO), and elastic net. Most studies did not 
require hyperparameters tuning, and nested k-fold CV [in descending 
order of frequency: ( n = 8) 10-fold, ( n = 6) 3-fold, ( n = 3) 5-fold, and 
( n = 2) 20-fold] was the predominant choice. See Supplementary Table 
1 for details. 
Diversity of validation 

For validation strategy, 48 studies (44.4%) involved leave-one-out 
cross-validation (LOO CV). Twenty-four of these LOO CV papers men- 
tioned they used the Yale approach, suggesting a dependency of this CV 
strategy on the CPM modeling approach. The annual ratio of studies us- 
ing LOO CV fluctuated around 50% and showed no obvious trend against 
year (Pearson correlation test on period 2013–2021, n = 9, r = 0.341, 
p = 0.369; Fig. 1 E). Ten-fold CV and 4-fold CV were involved in 19 and 
10 studies respectively. Meanwhile, 27 studies involved external test 
sets (26 were cross-dataset whereas one was cross-site) and they were 
published in 2016–2021 ( Fig. 1 A). The proportion of studies using an 
external test set has remained largely constant across years with no dis- 
cernible trend (Pearson correlation test, n = 6, r = 0.037, p = 0.945). 
Readers should be aware of the few data points used in these two tests. 
Potential influencing factors on prediction accuracy 

Table 4 shows that sample size could influence the prediction ac- 
curacy. Precisely, the smaller the sample size of the training set, the 
higher the internal validation prediction accuracy was found ( n = 81, 
r = * 0.265, p = 0.017). On the contrary, the sample size of the exter- 
nal test set did not show significant correlation with external validation 
prediction accuracy. Meanwhile, the amount of data from self-recruiting 
studies (but not studies using open, shared dataset) was positively cor- 
related with internal validation prediction accuracy ( n = 30, r = 0.651, p 
< 0.001). At the same time, self-recruiting studies also reported a signif- 
icantly higher internal validation prediction accuracy than those using 
open, shared datasets (Mean ± SD, self-recruiting: n = 46, 0.509 ± 0.229, 
shared dataset: n = 35, 0.386 ± 0.190, p = 0.012). Besides, internal val- 
idation reported higher accuracy than external validation within stud- 
ies that used both types of validation. Meanwhile, studies using mod- 
els that were uncontrolled for confounds reported a significantly higher 
internal validation prediction accuracy than those using models that 
were controlled for confounds (Mean ± SD, controlled studies: n = 33, 
0.395 ± 0.197; uncontrolled studies: n = 48, 0.498 ± 0.228, p = 0.038). 
Data type and participant age did not significantly influence prediction 
accuracy. Table 4 shows the detailed results of the statistical tests. It 
should be noted that some studies may provide more than one data 
point whereas some studies may have missing data for the statistical 
tests, and hence the n reported may not correspond to the number of 
studies involved. Readers should refer to Supplementary Table 3 for the 
data used. 

When the significant factors were considered together by partial cor- 
relation tests, it was found that training set sample size remained signif- 
icant after adjusted for confound control, but became insignificant after 
considering participant source or amount of data. Meanwhile, partic- 
ipant source remained significant after adjusted for confound control, 
but became insignificant after considering training set sample size or 
amount of data. In turn, amount of data for studies recruiting subjects 
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Table 3 
Brain atlases referred by studies using connectome data. 
Brain atlas No. of nodes Coverage (whole brain, cortex 

only, cerebellum only, etc.) Functionally defined vs 
anatomically defined Number of 

studies 
Shen 268 atlas, see ( Finn et al., 2015 ; Shen et al., 2013 ) 268 Whole brain Functionally defined 29 
( Power et al., 2011 ) 264 Whole brain Functionally defined 8 
( Fan et al., 2016 ) 246 Whole brain Anatomically defined 5 
Independent component analysis (ICA) components Variable Variable Variable 5 
( Dosenbach et al., 2010 ) 160 Whole brain Functionally defined 4 
( Tzourio-Mazoyer et al., 2002 ) 116 Cortex only Anatomically defined 3 
( Glasser et al., 2016 ) 360 Cortex only Functionally and 

anatomically defined 3 
( Gordon et al., 2016 ) 333 Cortex only Functionally defined 3 
( Schaefer et al., 2018 ) 100–1000 (400 version 

used in 2 studies) Cortex only Functionally defined 2 
( Desikan et al., 2006 ) 68 Cortex only Anatomically defined 2 
( Gilmore et al., 2012 ) 78 Cortex only Anatomically defined 1 
( Diedrichsen, 2006 ) 28 Cerebellum Anatomically defined 1 
( Fischl et al., 2002 ) 37 (14 used in 1 study) Whole brain Anatomically defined 1 
( Buckner et al., 2011 ) 7 or 17 Cerebellum Functionally defined 1 
( Feng et al., 2019 ) 52 Whole brain (neonatal) Anatomically defined 1 
( Yeo et al., 2011 ) 114 (39 used in 1 study) Cortex only Functionally defined 1 
( Destrieux et al., 2010 ) 148 Cortex only Anatomically defined 1 

Some studies referred to multiple atlas and they were counted within the table. 
Table 4 
Influencing factors of prediction accuracy. 
Factor Test Stat P value 
Sample size Pearson correlation 
a. of external test set (prediction accuracy from external validation) n = 17, r = * 0.302 (i.e. larger test set, lower 

prediction accuracy) 0.239 
b. of training set (prediction accuracy from internal validation) n = 81, r = * 0.265 (i.e. larger test set, lower 

prediction accuracy) 0.017 
Amount of data (total number of volumes per individual) Pearson correlation 
a. for studies recruiting subjects n = 30, r = 0.651 (i.e. more data, higher prediction 

accuracy) < 0.001 
b. for studies using open, shared dataset n = 28, r = * 0.095 (i.e. less data, higher prediction 

accuracy) 0.629 
Data type (task, rest, naturalistic, structural vs mixed) One-way ANOVA Mean ± SD 

Task ( n = 20): 0.510 ± 0.218, rest ( n = 36): 
0.421 ± 0.166, structural ( n = 18): 0.410 ± 0.270, 
mixed ( n = 10): 0.567 ± 0.243 (No study used 
naturalistic data) 

0.129 

Participant source (self-recruiting vs open, shared dataset) T-test Mean ± SD 
Self-recruiting ( n = 46): 0.509 ± 0.229, shared 
dataset ( n = 35): 0.386 ± 0.190 

0.012 
Participant age (involved minor vs adult only) T-test Mean ± SD 

Involved minor ( n = 16): 0.476 ± 0.233, adult only 
( n = 65): 0.451 ± 0.219 

0.688 
Control for confounds (yes vs no) T-test Mean ± SD 

Yes ( n = 33): 0.395 ± 0.197, no ( n = 48): 
0.498 ± 0.228 

0.038 
Validation type (internal vs external) 
a. for studies that involved both types Paired t -test Mean ± SD ( n = 13) 

Internal: 0.536 ± 0.242, external: 0.427 ± 0.158 0.014 
b. across all studies T-test Mean ± SD 

Internal ( n = 81): 0.456 ± 0.220, external ( n = 16): 
0.426 ± 0.153 

0.606 
Unless otherwise specified, prediction accuracy referred to Pearson’s correlation r value resulted from internal validation. Studies without reporting r value were 
omitted. It should be noted that some studies may provide more than one data point whereas some studies may have missing data for the statistical tests, and 
hence the n reported may not correspond to the number of studies involved. Readers should refer to Supplementary Table 3 for the data used. 
remained significant after adjusted for training set sample size and con- 
found control. On the contrary, confound control and validation type 
(for studies that involved both internal and external validation) were 
not significant after adjusted for other factors. Readers should refer to 
Supplementary Table 4 for the full results of the partial correlation tests. 

Additional analyses for only fMRI studies have shown that, the 
amount of data from self-recruiting studies (but not studies using open, 
shared dataset) was positively correlated with internal validation pre- 
diction accuracy ( n = 28, r = 0.654, p < 0.001). Self-recruiting studies 

also reported a significantly higher internal validation prediction accu- 
racy than those using open, shared datasets (Mean ± SD, self-recruiting: 
n = 31, 0.534 ± 0.211, shared dataset: n = 27, 0.375 ± 0.150, p = 0.002). 
Internal validation reported higher accuracy than external validation 
within studies that used both types of validation ( n = 10, Mean ± SD, 
internal: 0.524 ± 0.255, external: 0.408 ± 0.146, p = 0.045). Sample size 
did not correlate with prediction accuracy (Supplementary Table 5). No 
partial correlation test was conducted for this subset, as there were very 
little or no overlap between studies involving these significant factors. 
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Meanwhile, additional analyses for only sMRI studies have shown that 
none of the factors correlated with prediction accuracy (Supplementary 
Table 6). 
Discussion 

Based on 108 neuroimaging studies on individual traits prediction 
published mainly in the late 2010s, it was found that sample size of the 
training set was negatively correlated with prediction accuracy from 
studies using internal validation. Meanwhile, amount of data of re- 
cruited subjects was positively correlated with internal validation pre- 
diction accuracy. Recurring target phenotypes were memory, attention, 
and intelligence. Half of the studies recruited their own subjects whereas 
HCP was the dominant open, shared dataset to be used. The most typi- 
cal method for working with connectome data was “FCs with significant 
correlation (e.g. p < 0.01) with the predicted measure were selected as 
features ”. The most popular learning algorithms were CPM, multiple 
linear regression, RVR, SVR, PLSR, LASSO, and elastic net. Most stud- 
ies did not require hyperparameters tuning, and nested k-fold CV was 
the predominant choice for those required. LOO CV was the commonest 
validation strategy. Only a quarter of studies used external validation. 

Our results showed a negative correlation between internal vali- 
dation prediction accuracy and sample size. This negative correlation 
was similar to what was reported for mental disorders and health 
( Sui et al., 2020 ). Small sample size could lead to overfitting and hence 
the higher prediction accuracy particularly for CV cases, so that the 
trained model might explain little of the variance from an external test 
set ( Varoquaux et al., 2017 ). This is particularly problematic for study- 
ing patients with uncommon diseases or medical conditions, or eval- 
uating clinical outcomes of certain treatments ( Gabrieli et al., 2015 ). 
However, the use of external validation could overcome this problem, 
as such negative correlation vanished when the external validation pre- 
diction accuracy and the sample size of the external test set were eval- 
uated. 

Meanwhile, the small sample size issue could be partially addressed 
by using large open neuroimaging datasets. Currently there are multiple 
open datasets available to researchers, covering structural MRI, diffu- 
sion MRI, resting-state MRI, task-based fMRI, behavioral data, genomics 
data, and occasionally physiological and angiographic data from a sin- 
gle subject up to 100,000 subjects ( Horien et al., 2021 ; Madan, 2021 ). 
Examples included HCP, UK Biobank, and Adolescent Brain Cognitive 
Development (ABCD) study. However, the use of these large datasets 
tended to encourage some researchers to use CV or hold-out test sets (a 
priori split of the dataset) that could be optimistic. It will be more chal- 
lenging, but the results will be more robust if researchers share data 
and evaluate model performance on new sites or unseen datasets. Also, 
researchers should know how the data have been pre-processed and ma- 
nipulated, so that it could better match the characteristics of the neu- 
roimaging data from their own recruited subjects. Otherwise, the trained 
model might not give good predictions on an external test set. The users 
of HCP data should report precisely which dataset was used, as differ- 
ent datasets went through different processing pipelines and contained 
different subjects. 

Here, we reported a 25% of surveyed studies using external test sets. 
Consistent to a previous review reporting that only 25% of predictive 
modeling studies on treatment response to addictions (alcohol and sub- 
stance use) included external validation ( Yip et al., 2020 ). The small 
number of studies reporting external validation / unseen test sets could 
be due to generalization failure (of the models) or lack of additional 
independent data ( Sui et al., 2020 ). It was not possible for us to know 
if generalization failure did occur for the models, but such failure, if 
existed, could be accounted by model selection-related issues and ho- 
mogeneous sample ( Boeke et al., 2020 ). As very few datasets actually 
collected behavioral measures by implementing the same psychometric 
tests, it remains to be investigated whether similar behavioral measure 
(e.g. fluid intelligence/intelligence quotient) from different datasets can 

be predicted with the same predictive model. External validation is rec- 
ommended, as it will avoid confusion from reporting in-sample model 
fit indices as predictive accuracy and avoid inappropriate CV procedure 
such as post hoc CV ( Poldrack et al., 2020 ). Therefore, open data sharing 
initiatives should be encouraged to make external validation more feasi- 
ble beyond a single laboratory or study site, before the models would be 
ultimately tested in a large-scale, diverse population-level ( Woo et al., 
2017 ). 

The connectome data and brain atlases used by the surveyed stud- 
ies were heterogeneous. This created a variation in the methodology 
used by different studies, rendering it a potential confounding factor in 
comparing results across different predictive models. Together with the 
studies using recruited subjects instead of open datasets, the variability 
of the analysis pipeline would influence the results as it would for single 
dataset or group analysis ( Botvinik-Nezer et al., 2020 ; Carp, 2012 ). 
Conclusion 

Based on this work, it was found that the literature currently largely 
fails to adhere to the recommended best practices, for instance, as out- 
lined by ( Scheinost et al., 2019 ; Woo et al., 2017 ). Few studies employed 
external validation for their trained predictive model. Without external 
validation, internal validation requires very careful planning and con- 
siderations with regard to sample size and CV method, which might 
be subjects of debate to avoid predictive models being too optimistic. 
Therefore, the authors recommended that future predictive modeling 
studies should always consider incorporating external validation. When 
using training and test sets from the same datasets, it is crucial to make 
them completely independent. 
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6 Discussion

The development of usable ML models is a multifaceted endeavor influenced by several

critical factors, including data quality, feature engineering, model selection, and

interpretability. Overlooking these factors can introduce risks, such as biased and

inaccurate predictions, compromised trust in the model’s decisions, and potential ethical

concerns. Hence, careful consideration of these factors is essential to building reliable

and trustworthy ML models (Scheinost et al., 2019).

In this work, we examined several key factors integral to the development of unbiased

and generalizable ML models, ensuring their utility in real-world scenarios. The first is

the e↵ective removal of confounding signals so that models are unbiased. To study this,

we tested several confound removal workflows on the task of sex classification using ReHo

and FC features derived from rs-fMRI data with brain size and age as confounds in study

1. We addressed the biological question of whether there are di↵erences in the functional

organization of brains between males and females after controlling for brain size. The

second is the usage of di↵erent feature spaces and ML algorithms for a given task to find

a generalizable model. To study this, we investigated several ML workflows using various

combinations of feature spaces from GMV data and ML algorithms to investigate their

e↵ect on age prediction performance in study 2. The aim was to find a generalizable

and reliable workflow for age prediction by evaluating it under various criteria important

for real-world application. We also investigated the potential of brain-age delta or delta,

i.e., the di↵erence in predicted and chronological age, as a biomarker and the factors

influencing its estimation. As various VBM pipelines exist for GMV estimation, in study

3, we extended the investigation from study 2 to examine the e↵ect of GMV estimates

from several VBM alternatives on age prediction performance. Finally, in study 4, we

conducted a literature survey of psychometric prediction studies using neuroimaging data.

This o↵ered a comprehensive summary of the field’s current state and advancements,

highlighting additional factors to consider when designing ML workflows.

The discussion encompasses results from various studies and is structured as

74



follows. In the initial segment of our discussion, we delve into two critical facets of ML

workflow design. First, we underscore the significance of exploring diverse feature spaces

and ML algorithms to find a generalizable model. Additionally, we examine the

influence of di↵erent preprocessing techniques on feature extraction and their

consequent impact on predictive performance, drawing insights from studies 1, 2, and 3.

Second, we address the concept of mitigating confounding bias and age bias to foster the

development of unbiased models, citing findings from studies 1 and 2. Next, we discuss

other general considerations integral to the design of ML workflows. These

considerations encompass feature preprocessing and engineering (as observed in studies

1 and 2), training sample size (observed in studies 2 and 4), external validation (from

study 4), and data shift (noted in studies 2 and 4), all of which exert an influence on the

generalizability of ML workflows. The latter part of the discussion centers on

interpretability and clinical relevance. We scrutinize the interpretability of the

confound-free sex prediction model as demonstrated in study 1. Next, we delve into the

clinical implications of the delta, touching upon its relevance in capturing deviance in

neurodegenerative disorders and its correlation with behavioral/cognitive measures in

healthy and diseased populations, drawing insights from study 2.

6.1 Machine learning workflow design

The overarching goal of ML is to develop unbiased and generalizable models for the task at

hand; however, the modeling process involves a series of pivotal decisions. When working

with imaging data, the variety of features that can be extracted is extensive. For instance,

in the field of computer vision, several kinds of features, such as color histograms, texture

features, edge detection, corner detection, and shape descriptors, can be helpful for tasks

such as image classification or object detection (Viola and Jones, 2001, Lienhart and

Maydt, 2002). Given the variety of features, it is di�cult to know which will be best

for a given task. Similarly, in the neuroimaging domain, a plethora of features can be

derived, and identifying the optimal set for a given task often necessitates a data-driven

approach. Additionally, the choice of neuroimaging preprocessing tools can introduce

variations in extracted features, potentially influencing model performance. Moreover,

within ML workflows, the preprocessing steps undertaken on the features or targets, such

as confound removal, Z-score normalization, feature selection, etc., also impact model

performance. The choice of the ML algorithm can a↵ect the learned relationship between
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features and the target of interest, which can significantly a↵ect the generalizability of

the models. Furthermore, factors such as training set sample size and di↵erences in data

properties between the train and test set can a↵ect how well the models perform on out-

of-sample test data from a new site. Thus, constructing a robust and reliable ML model

involves careful consideration of all these intricate decisions and their collective impact

on model performance and generalizability.

6.1.1 Try di↵erent feature spaces and ML algorithms

The choice of feature space plays a vital role in predictive analysis. Various feature

spaces can capture distinct types of information from neuroimaging data, leading to

diverse outcomes in predictive tasks. Moreover, the selection of ML algorithms can

significantly impact the ability to learn the true relationship between these features and

target variables. Thus, it becomes imperative to systematically explore many feature

spaces and ML algorithm combinations in neuroimaging studies to obtain optimal

predictive models and get valuable insights.

A variety of features can be used for sex classification. Some studies have adopted

a classification approach based on sMRI (Feis et al., 2013, Rosenblatt, 2016, Zhang et al.,

2020, Ebel et al., 2023) or fMRI (Smith et al., 2013b, Ktena et al., 2018, Zhang et al.,

2018, Weis et al., 2019) data. Studies with fMRI have generally employed whole-brain

FC based on pre-defined regions of interest (ROI) or brain parcellations and achieved a

sex prediction accuracy of roughly 75–83% (Satterthwaite et al., 2015, Weis et al., 2020,

Zhang et al., 2018, Zhang et al., 2020). Using ReHo, a prediction accuracy of 91% has

been shown (Zhang et al., 2020). The choice of the algorithm in previous studies includes

SVM (Zhang et al., 2020, Weis et al., 2020), partial least squares regression (Zhang et al.,

2018, Chen et al., 2019), random forests classifier Chen et al., 2019, logistic regression

(Al Zoubi et al., 2020). Our results from study-1 are consistent with the existing literature

demonstrating CV accuracy of 75-78% and out-of-sample test accuracy of 76-78% without

controlling for brain size. In contrast, one study observed a lower prediction accuracy of

62% (Casanova et al., 2012). This might be because of a smaller sample size of only 148

subjects and a high feature dimensionality of FC. A recent study reported a high sex

prediction accuracy of 98%(Chen et al., 2019). This high accuracy might be because the

study used the HCP1200 dataset (Van Essen et al., 2013), which includes sibling data.

Since siblings exhibit similar FC patterns, high prediction accuracy can be achieved if
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siblings are not grouped together either in the training or the test sets. Furthermore, the

study employed group-independent component analysis (Smith et al., 2013a) to derive six

ROI definitions as features before splitting the data into train and test sets. To be noted,

in our study, we found slightly higher accuracy with ReHo features compared to FC and

partial least squares outperforming ridge, indicating the e↵ect of feature space and ML

algorithms on prediction error.

The initial exploration of age prediction using GMV within a single cohort was

documented in 2007 (Ashburner, 2007). Subsequently, there has been a surge in

brain-age prediction studies aiming to assess the e�cacy of delta as a potential

biomarker for brain health (Cole et al., 2017, Beheshti et al., 2022). One of the crucial

challenges with developing a brain-age estimation framework is selecting input feature

space. Various imaging modalities o↵er distinct insights; for example,

fluorodeoxyglucose-positron emission tomography scans reveal details about the brain’s

glucose metabolism, while sMRI data provide information about the anatomy/structure

of the brain. T1-weighted MRI images have been extensively used in brain-age

estimation studies. The two commonly used feature extraction approaches from

T1-weighted images include (i) voxel-wise methods which use gray matter, white matter,

CSF signal intensities as brain features (Franke et al., 2010, Gaser et al., 2013, Cole

et al., 2015 Becker et al., 2018, Varikuti et al., 2018, Sone et al., 2022); and (ii)

region-wise methods, which use cortical and subcortical measurements of volume,

surface, and thickness values as brain features (Aycheh et al., 2018, Zhao et al., 2019,

Lee et al., 2021, Vidal-Pineiro et al., 2021, Elliott et al., 2021, Lange et al., 2022).

Dimensionality reduction through unsupervised methods like PCA is commonly

employed on voxel-based data, which removes redundant information and helps in

reducing computational cost and increasing accuracy (Franke et al., 2010, Becker et al.,

2018, Baecker et al., 2021a). Although both kinds of features are used widely, one study

comparing ML models using voxel-and region-based morphometric data found

voxel-based features to perform better than the region-based features (Baecker et al.,

2021a). In our study 2, comparing 128 workflows constituting 16 feature spaces

extracted from GMV images (voxel-wise and parcel-wise) and eight ML algorithms

(linear and non-linear) for age prediction, we also found voxel-wise features generally

performed better than parcel-wise features. This suggests that sometimes, summarizing

information, like using average GMV from voxels in di↵erent parcels or regions, can
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cause information loss, leading to lower prediction performance.

Another important step in developing a brain-age estimation framework is choosing

an ML model. The most widely used regression algorithms include RVR (Franke et

al., 2010, Gaser et al., 2013, Baecker et al., 2021a), GPR (Cole et al., 2018, Becker

et al., 2018 Baecker et al., 2021a), SVR (Lancaster et al., 2018, Sone et al., 2021), and

eXtreme Gradient Boosting (Lange et al., 2022, Butler et al., 2021). Overall, the available

ML models for brain-age prediction di↵er with regard to complexity and computational

resources and have been shown to influence prediction accuracy (Beheshti et al., 2022).

Recent studies have compared the performance of commonly used models to guide on the

most suitable model choices for brain-age prediction (in narrow age range: MAE = 2.6-

2.7 and 3.7-4.7 years (Lee et al., 2021, Baecker et al., 2021a) and in broad age range: MAE

= 7.2-7.7 and 4.6-7.1 years (Lee et al., 2021, Beheshti et al., 2022)). From our study 2, we

found that either non-linear or kernel-based algorithms (GPR, KRR, and RVR) are well

suited for brain-age estimation. These results align with a study that comprehensively

evaluated 22 ML algorithms in broad age range data using GMV features and found SVR,

KRR, and GPR with a diverse set of kernels to perform well (Beheshti et al., 2022).

We found voxel-wise GMV features smoothed with a 4 mm FWHM kernel and

resampled to a spatial resolution of 4 mm, with PCA retaining 100% variance, and the

GPR model (S4 R4 + PCA + GPR) was the best-performing workflow on the evaluated

criteria and was selected for the downstream analysis. This is in line with another study

reporting a voxel size of 3.73 mm3 and a smoothing kernel of 3.68 mm as the optimal

parameters for processing GM images for brain-age prediction with a performance similar

to our workflows (Lancaster et al., 2018).

To note, we evaluated these workflows on four criteria in contrast to other studies

evaluating either one or two. Moreover, we used multiple large cohorts for training and

testing the models. On the first criterion, within-dataset performance, the MAE ranged

between 4.9–8.5 years and 4.7–8.4 years in CV and left-out-test data for 128 workflows. On

the second criterion, cross-dataset performance, the MAE ranged between 4.3–7.4 years

and 5.2–9.0 years in CV and out-of-sample test data. The third and fourth criteria, i.e., the

test-retest reliability and longitudinal consistency, also varied for di↵erent combinations of

feature space and ML algorithm. All these criteria are important facets of any biomarker

(Cole and Franke, 2017). We found the delta reliable over a short scan delay of less than

three months (concordance correlation coe�cient = 0.76–0.98; Lawrence and Lin, 1989) in
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two test datasets. This aligns with other studies which have shown intraclass correlation

coe�cient between 0.81-0.96 in di↵erent samples with di↵erent age groups (Cole et al.,

2017, Franke and Gaser, 2012, Elliott et al., 2021). For the last criterion, longitudinal

consistency, we found a significant positive linear relationship between the di↵erence in

predicted age and the di↵erence in chronological age at a retest duration of 2–3.25 years

(r = 0.45–0.44) in one dataset and no correlation with a retest duration of 3–4 years in

another test dataset. Thus, the evidence for longitudinal consistency was weak. Previous

research suggests that lifestyle interventions like meditation and exercise positively impact

brain-age (Luders et al., 2016, Ste↵ener et al., 2016, Levakov et al., 2023), while habits

such as smoking and alcohol intake may have adverse e↵ects (Bittner et al., 2021, Cole,

2020), influencing longitudinal brain-age trajectories. One study found no association

between cross-sectional brain-age and the rate of brain change measured longitudinally,

questioning the validity of brain age as a reliable marker for ongoing brain aging changes

within an individual (Vidal-Pineiro et al., 2021). Thus, further studies on longitudinal

brain age are therefore necessary.

In general, we observed MAE of ⇠ 4.7 years in our healthy population, which

compares favorably with existing literature (Franke et al., 2010, Cole et al., 2015,

Lancaster et al., 2018, Boyle et al., 2021, Baecker et al., 2021a, Eickho↵ et al., 2021).

However, we would like to acknowledge here that this error (MAE) encompasses both

the generalization error of the models and genuine biological deviation, and it is

challenging to determine their respective contributions. So, there is still a need to

develop more accurate models. Recent work suggests that by using large training

datasets (⇠ 10000 subjects or more) and complex models such as deep learning, the

prediction error can go down to ⇠ 3 years (Levakov et al., 2020, He et al., 2021b, He

et al., 2021a, Tanveer et al., 2023), likely reflecting biological variability.

We also conducted experiments to explore the potential performance improvement

gained by incorporating additional features from various tissue types. Studies have shown

di↵erent patterns in both the global and regional GMV, WMV, and CSF alterations in

the young and older groups with aging (Good et al., 2001, Ge et al., 2002, Farokhian

et al., 2017). Therefore, features from di↵erent tissue types may o↵er complementary

information related to age, leading to better predictions. As anticipated, predictions

using three tissues, GMV, WMV, and CSF combined as features, were better than GMV

only in our study (for example, MAE = 5.08 vs. 6.23). However, one should be cautious
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about large dimensions of features compared to the sample size, which might lead to

overfitting (Hastie et al., 2009). To address this, we used PCA, keeping 100% variance

on the features, thus reducing the number of features to 450 only. Our findings are

consistent with a previous study that showed a slight performance improvement when

using both GMV and WMV compared to only using GMV (Cole et al., 2017). Notably,

combining features from di↵erent tissue types has been popular in brain-age estimation

studies (Franke and Gaser, 2012, Cole et al., 2018, Hobday et al., 2022). Overall, our

results from both study-1 and study-2 provide evidence for the impact of the choice of

feature space and the ML algorithm on the prediction performance.

In study 2, we used the CAT toolbox (Gaser et al., 2022), one of the standard

VBM analysis choices, to derive estimates of GMV, WMV, and CSF. However, there are

several alternatives available, such as SPM (Ashburner and Friston, 2000) and FSL

(Smith et al., 2004), exhibiting di↵erential specificity in GMV estimation (Bhagwat

et al., 2021). VBM analysis involves a series of essential preprocessing steps,

encompassing brain extraction, segmentation, spatial registration or normalization, and

modulation. VBM tools o↵er di↵erent algorithms with several configurable options for

each preprocessing step. These di↵erences can lead to di↵erences in the GMV estimates,

which can influence the estimated association with age (Tavares et al., 2020, Zhou et al.,

2022). A study demonstrated that GMV and WMV estimates obtained through SPM12

and CAT12 di↵ered, further impacting their relationship with age (Tavares et al., 2020).

Another recent study performing a comprehensive comparison between CAT12, two

FSL-based and one FSL-dependent hybrid pipelines has shown that the choice of

preprocessing pipeline impacts sex and age prediction performances (Zhou et al., 2022).

We found evidence supporting that di↵erent preprocessing tools can give di↵erential age

prediction outcomes. In study 2, we found that CAT-derived GMV performed better

than SPM-derived GMV with lower MAE, higher correlation between true and

predicted age, and lower age bias, i.e., the correlation between age and delta.

To delve deeper, in study 3, we evaluated 10 VBM pipelines, including two o↵-the-

shelf pipelines, CAT (version 12.8, r1813) and FSLVBM (uses FSL tools, version 6.0), and

three modularly constructed pipelines, including Advanced Normalization Tools (ANTs,

version 2.2.0), ANTs-FSL (uses ANTs for brain extraction and segmentation, FSL for

registration) and fMRIPrep-FSL (uses ANTs for brain extraction, FSL for segmentation

and registration), each of these implemented using a general template (e.g., MNI-152) and
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a study-/data-specific template. Using three large datasets covering the adult lifespan

acquired in di↵erent scanners and protocols, the systematic di↵erences between the VBM

pipelines were confirmed by the high accuracy when predicting the pipelines using their

respective GMV estimates. There was a substantial impact of GMV derived from di↵erent

VBM pipelines on within-dataset and cross-dataset age prediction performance, with

fMRIPrep-FSL and CAT-derived GMV estimates performing the best.

In summary, results from both studies reveal the significant impact of di↵erent

preprocessing or feature extraction tools on GMV estimates, which influenced the

prediction performance. The results highlighted the importance of testing di↵erent

combinations of feature spaces and ML algorithms in a data-driven fashion and

evaluating them on multiple criteria to find an accurate and generalizable workflow.

6.1.2 Control for bias

Controlling for bias in ML workflows is critical to ensure fairness, equity, and accuracy

in the predictions and decisions. Biases can arise from various sources, including non-

representative training data, imbalances in class distribution, the presence of confounds,

or incomplete information in the features (missing variable bias), among other potential

sources (Mehrabi et al., 2021, Larrazabal et al., 2020, Li et al., 2022). Our studies

addressed two specific biases and outlined strategies to deal with them e↵ectively.

6.1.2.1 Removal of confounding signal

If one wants to establish a brain-phenotype relationship by estimating generalization

performance and identifying brain regions explaining the variance in phenotype, it is

important to control for confounding signals that can mask the true relationship between

brain and phenotype. Brain size is highly correlated with sex, with a larger total brain

volume in males compared to females, and is encoded in neuroimaging features such as

ReHo and FC (Ruigrok et al., 2014, Ritchie et al., 2018). Hence, brain size is a confound

in the sex classification task if one is interested in studying the di↵erence in functional

organization between sexes. Regressing out brain size signal from every feature can remove

sex-specific information from the features, therefore forcing the prediction performance to

be weaker. In (Zhang et al., 2018), authors have shown that the sex prediction accuracy

drops from 80% to 70% after regressing out brain size from FC. In our study 1, all three
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datasets showed significant brain size di↵erences between sexes, and consequently, we

saw the highest model performance for sex classification with workflow not controlling

for confounds. The out-of-sample test accuracy dropped from 76-78% to 56-67% after

confound removal; however, above-chance sex classification performance indicates that

models can capture the di↵erence in functional organization between sexes independent

of variations in brain size.

The two confound removal approaches investigated, WDCR and CVCR, showed

reduced performance in line with previous studies (Pervaiz et al., 2020, Snoek et al., 2019).

We subsequently validated the e↵ectiveness of these confound removal methods. There

were no correlations between each residual feature and brain size in a univariate fashion

with both schemes. We checked for any remaining multivariate confounding e↵ects using

multiple linear regression to predict brain size from the residual features and observed

negative adjusted R2 with both schemes. Thus, there was no signal from brain size in the

residual features after confound removal, and hence, the models should not encode any

confound-related information.

We observed lower generalization estimates with WDCR compared to CVCR. In

fact, with WDCR, the accuracy dropped to a chance level. This is contrary to

expectations as WDCR uses the whole sample before CV to remove confounding signals,

causing data leakage from the training sample to the testing/validation sample;

therefore, we expected higher generalization performance. However, in this case, that

actually made the model perform worse. This could be because WDCR aggressively

removes confounding signals from the data, leading to chance-level performance. On the

other hand, out-of-sample performance was closer to the generalization performance

estimated with CVCR. Consistent with our findings, other studies demonstrated that

WDCR led to pessimistic model performance estimates, notably below chance (Todd

et al., 2013, Snoek et al., 2019). They demonstrated that this occurs when the “signal”

in the data, operationalized as the width of the feature-target correlation distribution, is

lower than would be expected by chance (Snoek et al., 2019), similar to findings by

(Jamalabadi et al., 2016). WDCR reduces the width of the correlation distribution,

leading to lower model performance, and this e↵ect is exacerbated by higher

confound-target correlations and by a larger number of features. They showed CVCR

yielded significantly above-chance model performance and nearly unbiased model

performance in the simulations and di↵erent datasets with di↵erent numbers of features
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and the strength of the confound. CVCR removes all variance associated with the

confound in the train set and may show reduced performance in some scenarios (Snoek

et al., 2019).

Therefore, we concluded that CVCR is better for confound removal than WDCR.

Moreover, since the sex classification performance after confound removal was still high,

one could conclude that there are di↵erences in the functional organization of brains

between sexes, as captured from ReHo and FC after removing brain size di↵erences.

Another important observation was the disparity between important features from the

model trained without confound removal and those trained after confound removal (using

WDCR and CVCR), implying that interpretations derived from these models would be

di↵erent (for more details, refer to section 6.2.1).

6.1.2.2 Mitigation of age bias

Numerous brain-age estimation studies have reported age bias, a phenomenon wherein

brain-age or predicted age is over-predicted in young subjects, under-predicted in older

subjects, and subjects closer to the mean of training data are predicted more accurately

(Liang et al., 2019, Cole, 2020); thus causing a negative correlation between chronological

age and delta. This age bias complicates the use of delta in clinical contexts, as it can

lead to misleading correlations between delta and behavioral or cognitive measures and

erroneous interpretations while comparing delta between di↵erent clinical groups. To

mitigate this age bias, an additional bias correction step can be applied to the predicted

age or delta to regress out the e↵ect of age. Generally, a linear regression model is

fitted with the predictions on CV-derived training data as the dependent variable and

chronological age as the independent variable. The predicted age in the CV-derived

test set is corrected by subtracting the resulting intercept and dividing by the slope

(Cole, 2020). Training bias correction models in a CV-consistent fashion helps avoid

information leakage from the test to training data. There are several alternatives available

for statistical bias correction (Lange and Cole, 2020); the one we used does not use the

chronological age of the test data for correction, while others use test labels in correction

(Smith et al., 2019, Lange et al., 2019, Beheshti et al., 2019), causing data leakage and

not suitable for real-world use.

Our workflows showed negative associations between chronological age and delta

for both within-dataset and cross-dataset predictions (ranging between -0.2 to -0.8), with
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more accurate models displaying lower age bias. Speculatively, this age bias may be

attributed to missing or omitted variables bias, which occurs when a statistical model

leaves out relevant independent variables that are a determinant of the dependent variable

(Wilms et al., 2021). In other words, when the input features lack su�cient information to

predict age, predictions tend to cluster around the median or mean age, thus introducing

age bias, also demonstrated in another recent study (Lange et al., 2022). Consequently,

we observed that adding features from additional tissue types reduced the age bias in our

study.

Our results show that bias correction models work well in within-dataset analysis,

i.e., when the train and test sets are derived from the same dataset or site, but residual

bias remains in the predictions from cross-dataset analysis, i.e., when bias correction

models are derived from the training set and applied to out-of-sample test data from a

new site. This discrepancy may arise because of di↵erences in data properties, e.g.,

scanner-specific idiosyncrasy (Jovicich et al., 2006, Chen et al., 2014), between the

training and the test data. Additionally, we observed that the e↵ectiveness of bias

correction models was influenced by the sample size of the within-dataset used for

correction. Specifically, we found that smaller samples used for bias correction led to

high variance in mean corrected delta (see section 6.2.2.1). This aligns with previous

studies demonstrating greater variability in model performance with small sample sizes

(Varoquaux, 2018). Overall, the choice of data source (within-data or cross-data) and

the sample size used for bias correction substantially impact the quality of the model,

a↵ecting the corrected prediction values. This eventually a↵ects the observed

delta-behavior correlations (see section 6.2.2.2).

With these findings, we emphasize the importance of selecting an appropriate bias

mitigation strategy to ensure the predictions are bias-free, thereby ensuring accurate and

equitable decision-making.

6.1.3 Other general considerations

There can be several other factors that can a↵ect the generalizability of an ML model,

for instance, employing feature preprocessing and engineering, such as Z-score

normalization (Ali et al., 2014), PCA (Jolli↵e, 2002), and other feature selection

techniques (Chandrashekar and Sahin, 2014, Mwangi et al., 2014), can help improve

model performance. Additionally, other factors such as training set sample size and
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di↵erence in data properties between the train and test set can a↵ect how well the

models perform on out-of-sample test data from a new site (Hastie et al., 2009). This

section delves into specific observations derived from our studies in these contexts.

6.1.3.1 Feature preprocessing and engineering

Several preprocessing steps can be applied to features prior to model training, which can

help improve data quality and improve model performance. One common technique is

Z-score normalization, which transforms the features by subtracting the mean value of a

feature from each data point and then dividing it by the standard deviation of that feature,

thus centering the data around a mean of zero and scaling it to have a standard deviation

of one (Ali et al., 2014). It helps mitigate the magnitude di↵erences between features,

ensuring that all features contribute equally to the learning process, aids algorithms that

rely on distance or magnitude comparisons to work e↵ectively, and makes the coe�cients

or feature importance scores comparable and easier to interpret. In study 1, we observed

that Z-scoring improved the model performance for sex classification with ReHo but not

with FC. Additionally, the Z-score normalization of the features before or after confound

removal did not a↵ect model performance. However, since some learning algorithms

might benefit from well-scaled features (Anggoro and Supriyanti, 2019, Fei et al., 2021),

we recommend normalizing features after confound removal.

For high-dimensional neuroimaging data, employing dimensionality reduction

techniques can improve the observations-to-features ratio. One method is variance

thresholding, which is a feature selection technique that filters out low-variance features

that are less informative for predictive modeling. Some feature engineering methods,

such as PCA, can transform high-dimensional data into a lower-dimensional space while

retaining the variance in the original features (Jolli↵e, 2002, Lever et al., 2017). Another

commonly employed approach in neuroimaging involves resampling voxel-wise data to

lower spatial resolution (Franke et al., 2010) or using a brain atlas to summarize data

from distinct brain regions or parcels (Fan et al., 2016, Yeo et al., 2011, Buckner et al.,

2011). In study 2, we observed that smoothed and resampled voxel-wise GMV

outperformed parcel-wise GMV, suggesting that summarizing information can result in

a loss of valuable information in certain cases. Interestingly, smoothed and resampled

voxel-wise GMV with and without PCA yielded similar results, contrary to other studies

that have shown performance improvement with PCA (Franke et al., 2010, Franke and
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Gaser, 2012). This could be attributed to prior dimensionality reduction through

resampling. These results highlight the importance of feature preprocessing and

engineering in performance improvement in some cases.

6.1.3.2 Large training sample size and external validation

A large training sample is of paramount importance in ML. It can help improve

generalization capabilities by providing a more representative and diverse set of data

points, enabling the model to capture underlying patterns in the data and reduce the

risk of overfitting (Hastie et al., 2009). As articulated by Domingos, a key rule is “more

data beats a cleverer algorithm,” emphasizing the critical role of training sample size

(Domingos, 2012). In study 2, we observed lower CV generalization errors with a higher

sample size in the cross-dataset analysis as it had a larger sample pooled from multiple

datasets compared to the single cohort within-dataset analysis. Additionally, bias

correction models worked e↵ectively with large sample sizes (see section 6.2.2.1). This

highlights the impact of the training set sample size on the estimation of generalization

performance and corroborates with previous studies showing lower errors with larger

training datasets (Baecker et al., 2021a, Lange et al., 2022). On the contrary, in study 4,

our literature review on existing psychometric prediction research showed an intriguing

negative relationship between prediction accuracy and sample size, similar to some other

studies (Sui et al., 2020, Varoquaux, 2018, Wolfers et al., 2015). This pattern was

particularly noticeable in studies employing CV within single cohorts. Since only 25

percent of the surveyed studies used external test sets, it was not possible to assess

whether highly accurate models were overfitted. The higher prediction accuracies

observed in smaller samples may not necessarily imply superior models; rather, they

could be attributed to publication bias. Nevertheless, this negative correlation did not

reach statistical significance when comparing external test accuracy and the external

test sample size, suggesting that employing external validation is a valuable approach to

address this issue. .

6.1.3.3 Presence of data shift

Neuroimaging studies frequently involve data acquisition from various scanners, which

might cause systematic di↵erences related to di↵erent scanning platforms (Jovicich

et al., 2006, Kruggel et al., 2010) between the training and the out-of-sample test
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sample. Additionally, demographic di↵erences between samples might exist, leading to

dataset shift and confound shift (Landeiro and Culotta, 2018). An ideal model should

generalize well despite such di↵erences. From study 1, we found that in the absence of

data shift, i.e., when sample properties between train and test are similar, the

out-of-sample performance was best when confound models from the train data were

applied to test data. On the other hand, the test performance was much lower in the

presence of data shift. Even though residual correlations were observed between features

and confound in the out-of-sample test data after applying confounding models, the

training models were confounding-free, so this performance cannot be driven by

confounding e↵ects. Similarly, from study 2, we found the workflows gave a lower

performance on out-of-sample test data from cross-dataset analysis compared to

within-dataset analysis. Additionally, the bias correction models derived from the

cross-dataset did not correct for the age bias adequately. These results indicate that ML

workflows might show reduced performance on new test samples in the presence of data

shift.

Overall, the findings from the four studies emphasize the significance of careful

implementation at each step of ML workflow design. It highlights various factors

impacting the predictive performance of ML workflows, including preprocessing tools,

feature space and preprocessing steps applied to features, ML algorithm choices, and the

presence of data shifts. They highlight the significance of conducting data preprocessing

within the CV loop, utilizing large samples, and external validation if possible.

6.2 Interpretability and clinical relevance

Interpretability is the degree to which a human can understand the cause of a decision

(Miller, 2019). The higher the interpretability of an ML model, the easier it is for

someone to comprehend why certain decisions or predictions have been made. It aids

trust in the decisions, which is especially important for critical tasks such as clinical

diagnosis. Inherently interpretable models can provide valuable insights into

brain-behavior relationships by investigating feature importance scores. The

advancement in interpretable ML/explainable AI has led to local model-agnostic

interpretability methods (Molnar, 2019, Carvalho et al., 2019). While exploring model

interpretability was not our primary focus, we did investigate significant brain regions

associated with sex prediction. Additionally, we sought to evaluate the clinical
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significance of delta.

6.2.1 Interpretability of confound-free sex prediction model

Removing confounding e↵ects is crucial for obtaining unbiased results; otherwise, an ML

model might mostly rely on confounds, rendering signals of interest redundant. We

compared the predictive features from two models: a model trained without removing

the confounding signal of brain size and another confound-free model for sex prediction.

As anticipated, we observed di↵erences in the predictive features between these two

models. Specifically, we noticed that the features selected by the model without

confound removal exhibited stronger positive or negative correlations with brain size.

Conversely, in models incorporating confound removal techniques (WDCR and CVCR),

the selected features displayed lower correlations with brain size. This suggests that the

features selected after accounting for confounding signals can capture the functional

patterns associated with sex di↵erences. With ReHo, the performance was slightly

better compared to FC, and selected regions were in the dorsolateral prefrontal cortex,

inferior parietal lobule, occipital, ventromedial prefrontal cortex, precentral gyrus, post

insula, parietal, temporoparietal junction, and inferior cerebellum, in line with a study

identifying regions in the inferior parietal lobule and precentral gyrus (Xu et al., 2015).

These regions are associated with a diverse array of cognitive and functional processes

that have been shown to exhibit sex-related di↵erences (Miller and Halpern, 2014). We

found important FC features widespread across the entire brain with strong

interhemispheric connections, suggesting sex-related variations in neural function and

connectivity involve a global network and integration of information between the two

brain hemispheres.

6.2.2 Clinical relevance of brain-age delta

Brain-age estimations derived from sMRI features o↵er an intuitive measure of the

brain’s intricate aging patterns. The disparity between predicted and chronological age

(delta) can serve as a valuable metric for assessing deviations from typical brain aging

trajectories. Various diseases, including neurological conditions such as AD, MCI

(Franke et al., 2010, Franke and Gaser, 2012, Gaser et al., 2013), Parkinson’s disease

(Eickho↵ et al., 2021, Beheshti et al., 2020), traumatic brain injury (Cole et al., 2015,
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Savjani et al., 2017), epilepsy (Sone et al., 2021, Pardoe et al., 2017), multiple sclerosis

(Cole et al., 2020, Høgestøl et al., 2019), and stroke (Egorova et al., 2019, Richard et al.,

2020), as well as psychiatric disorders such as schizophrenia (Lee et al., 2021,

Koutsouleris et al., 2014), bipolar disorder (Hajek et al., 2019, Van Gestel et al., 2019),

major depressive disorder (Han et al., 2021a, Han et al., 2021b), autism spectrum

disorder (Becker et al., 2018, Lombardi et al., 2020), and attention deficit hyperactivity

disorder (Kaufmann et al., 2019), have shown higher brain-age. Studies suggest that

preclinical stages of some diseases, such as clinical high risk for psychosis (CHR) and

early-stage first-episode psychosis (FEP) (preclinical stage of schizophrenia) and MCI

(preclinical stage of AD), display neuroanatomical changes and already show increased

delta. Moreover, higher brain-age has been shown to relate to cognitive aging, multiple

aspects of physiological aging such as grip strength, lung function, lifestyle factors such

as smoking and alcohol consumption, and mortality in older adults (Gaser et al., 2013,

Liem et al., 2017, Anatürk et al., 2021, Boyle et al., 2021, Franke and Gaser, 2012, Cole

et al., 2018, Cole, 2020). On the other hand, lower brain-age has been shown to relate to

protective e↵ects of medication (Luders et al., 2016), practicing music (Rogenmoser

et al., 2018), or having higher levels of education or physical activity (Ste↵ener et al.,

2016). Thus, delta holds promise as a marker for general brain health, early detection of

brain disorders, and evaluating the e↵ects of lifestyle changes and medications (Franke

and Gaser, 2019, Cole and Franke, 2017). We explored the clinical utility of delta by

applying brain-age models to neurodegenerative disorder and by computing the

relationship between delta and behavioral/cognitive measures in healthy and diseased

populations.

6.2.2.1 Higher brain-age delta in disease

For age prediction, our selected workflow (S4 R4 + PCA + GPR) showed high

within-dataset performance, cross-dataset performance, test-retest reliability, and

moderate longitudinal consistency in the healthy population. These findings illustrate

that the brain-age model can e↵ectively capture the typical structural changes

associated with healthy aging. Neurodegenerative disorders, such as AD and MCI, are

characterized by progressive structural and functional disruptions in the brain, causing a

decline in global and local GMV (Good et al., 2001, Fjell et al., 2014). Consequently,

patients with neurodegenerative disorders have older-appearing brains, which brain-age
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prediction models should be able to capture. We tested this by comparing the delta

between HC, early MCI, late MCI, and AD groups. We found advanced brain aging

with neurodegenerative disorders, with the mean corrected delta significantly higher in

the AD (6.6-4.5 years) and late MCI (2.9-2.1 years) groups compared to HC. Our results

align with previous studies, which have reported an increased delta of 3–8 years in MCI

and ⇠ 10 years with AD patients (Franke and Gaser, 2012, Gaser et al., 2013, Varikuti

et al., 2018, Beheshti et al., 2022). Furthermore, the corrected delta correlated with

disease severity and cognitive impairment measures, such as the Mini-Mental State

Examination, Global Clinical Dementia Rating Scale, and Functional Assessment

Questionnaire in MCI and AD patients, in line with other studies (Franke and Gaser,

2012, Gaser et al., 2013, Löwe et al., 2016, Beheshti et al., 2018). Thus, the delta

confirmed its potential to indicate accelerated brain aging in neurodegenerative diseases.

Furthermore, we demonstrated that the delta estimates in di↵erent groups were

dependent on the workflow, i.e., the feature space and ML algorithm used, which

consequently a↵ected the observed relationship with cognitive measures. Moreover, the

choice of data for bias correction, whether within-dataset or cross-dataset, impacted the

delta estimates. Within-dataset correction worked more e↵ectively, although it was also

influenced by the size of the within-dataset. We tested the impact of within-dataset

sample size on the e↵ectiveness of bias correction by using di↵erent sub-samples of

within-dataset HC subjects to correct the age bias in HC and AD groups. We found

high variance in the mean corrected delta using small sample sizes. As a result, it is

imperative to exercise caution when comparing findings across di↵erent research studies

as they di↵er in experimental setup and methodology, such as feature spaces, ML

algorithms, and di↵erent methods and sample sizes for bias correction, leading to

di↵erences in the outcomes.

6.2.2.2 Delta-behavior correlations in healthy populations

Previous studies have shown delta is predictive of mortality and correlates with age-

sensitive physiological measures, including grip strength, lung function, walking speed,

blood pressure, and allostatic load in the aging population (Cole et al., 2018, Cole, 2020).

Delta is significantly increased in AD, MCI, and Parkinson’s disease (Franke and Gaser,

2012, Eickho↵ et al., 2021). Most studies have shown an association of delta with cognitive

variables in a clinical population. It is important to check if delta can capture cognitive
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and behavior variability associated with healthy aging. Due to the presence of age bias,

it is essential to control for age when analyzing correlations between delta and behavioral

measures; otherwise, it will give spurious correlations. One could either use age as a

covariate while using the uncorrected delta or apply the bias correction method to get

corrected predictions and then use the corrected delta for further analysis (Le et al., 2018).

We identified a weak but statistically significant association between delta and

several cognitive and motor performance measures using CV predictions from

within-dataset analysis. Specifically, we observed that higher uncorrected delta values

(while controlling for age as a covariate) were correlated to lower fluid intelligence,

higher motor learning reaction time, and lower response inhibition and selective

attention abilities. It is worth noting that these correlations exhibited slight variations

when using corrected delta values. The reason could be the di↵erence between the two

methods to control for age bias; when using age as a covariate, the whole sample is used,

while the linear regression for bias correction uses CV-derived training data, leading to

correction using fewer data points. Moreover, our investigation also showed a disparity

between delta-behavior correlations derived from within-dataset predictions and those

obtained through cross-dataset predictions, even though they were highly correlated. In

the cross-dataset analysis, delta values did not exhibit significant correlations with fluid

intelligence and motor learning reaction time; however, the higher delta was correlated

with lower response inhibition, selective attention abilities, and lower executive

functioning. One previous multi-site study has shown that a higher delta is associated

with lower general cognitive status, processing speed, visual attention, cognitive

flexibility status, and semantic verbal fluency (Boyle et al., 2021). These findings

collectively suggest that the delta can capture variability in cognitive and behavioral

functioning in the healthy population. Nevertheless, the estimates of the delta are

sensitive to the ML workflow used and data used for bias correction, leading to

disparities in the observed delta-behavior associations.

Our results provide further evidence for the potential future application of delta as

a biomarker while drawing attention to factors influencing delta estimates. It is important

to note that there are remaining challenges in the field before brain-age estimation can be

used as a general screening tool in clinics (Butler et al., 2021, Kumari and Sundarrajan,

2023, Dempsey et al., 2023).
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6.3 Conclusion

This work addressed challenges encountered in designing a robust, generalizable, and

bias-free machine learning workflow. We emphasized the significance of confound

removal and the impact of confound regression strategies on prediction performance and

model interpretability, noting their limitations in the presence of data shifts. The study

demonstrates the importance of performing confound regression within a cross-validation

framework, akin to other preprocessing steps, to get generalizable performance estimates

using a sex classification task. Furthermore, we demonstrated the importance of

evaluating di↵erent feature spaces and machine learning algorithms in predictive

analysis and evaluating them under multiple criteria to find a robust and generalizable

workflow. Voxel-wise gray matter volume features and the Gaussian process regression

model exhibited superior performance in age prediction across various criteria important

for practical applicability. The studies highlight the e↵ect of neuroimaging preprocessing

tools for feature extraction, preprocessing steps on features, training sample size, and

data shifts on model performance and downstream analyses. Lastly, by shedding light on

the trends and issues in current psychometric prediction research, we advocate adopting

large sample sizes and external validation. Collectively, these insights contribute to a

more informed and e↵ective approach to designing ML workflows and stress the need to

exercise caution during the design process, meticulous result analysis, and reporting.
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Ceglarek, U., Stumvoll, M., Shelef, I., et al. 2023. The e↵ect of weight loss following

18 months of lifestyle intervention on brain age assessed with resting-state functional

connectivity. Elife. 12, e83604.

102



Levakov, G., Rosenthal, G., Shelef, I., Raviv, T.R., and Avidan, G. 2020. From a deep

learning model back to the brain—Identifying regional predictors and their relation to

aging. Human brain mapping. 41(12), 3235–3252.

Lever, J., Krzywinski, M., and Altman, N. 2017. Points of significance: Principal

component analysis. Nature methods. 14(7), 641–643.

Li, J., Bzdok, D., Chen, J., Tam, A., Ooi, L.Q.R., Holmes, A.J., Ge, T., Patil, K.R.,

Jabbi, M., Eickho↵, S.B., et al. 2022. Cross-ethnicity/race generalization failure of

behavioral prediction from resting-state functional connectivity. Science Advances.

8(11), eabj1812. doi: 10.1126/sciadv.abj1812.

Liang, H., Zhang, F., and Niu, X. (2019). Investigating systematic bias in brain age

estimation with application to post-traumatic stress disorders. Tech. rep. Wiley

Online Library.

Liem, F., Varoquaux, G., Kynast, J., Beyer, F., Masouleh, S.K., Huntenburg, J.M.,

Lampe, L., Rahim, M., Abraham, A., Craddock, R.C., et al. 2017. Predicting

brain-age from multimodal imaging data captures cognitive impairment.

Neuroimage. 148, 179–188.

Lienhart, R. and Maydt, J. (2002). “An extended set of haar-like features for rapid object

detection”. In: Proceedings. international conference on image processing. Vol. 1. IEEE,

pp. I–I.

Llera, A., Wolfers, T., Mulders, P., and Beckmann, C.F. 2019. Inter-individual

di↵erences in human brain structure and morphology link to variation in

demographics and behavior. Elife. 8, e44443.

Lombardi, A., Amoroso, N., Diacono, D., Monaco, A., Tangaro, S., and Bellotti, R.

2020. Extensive evaluation of morphological statistical harmonization for brain age

prediction. Brain sciences. 10(6), 364.

Lones, M.A. 2021. How to avoid machine learning pitfalls: a guide for academic researchers.

arXiv preprint arXiv:2108.02497.
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D., Bertram, L., Brandmaier, A.M., Drevon, C.A., Düzel, S., et al. 2021. Individual

variations in ‘brain age’relate to early-life factors more than to longitudinal brain

change. elife. 10, e69995.

Viola, P. and Jones, M. (2001). “Rapid object detection using a boosted cascade of simple

features”. In: Proceedings of the 2001 IEEE computer society conference on computer

vision and pattern recognition. CVPR 2001. Vol. 1. Ieee, pp. I–I.

Wang, J., Zuo, X., and He, Y. 2010. Graph-based network analysis of resting-state

functional MRI. Frontiers in systems neuroscience, 16.

Wang, W.-Y., Yu, J.-T., Liu, Y., Yin, R.-H., Wang, H.-F., Wang, J., Tan, L., Radua, J.,

and Tan, L. 2015. Voxel-based meta-analysis of grey matter changes in Alzheimer’s

disease. Translational neurodegeneration. 4(1), 1–9.

Weber, K.A., Teplin, Z.M., Wager, T.D., Law, C.S., Prabhakar, N.K., Ashar, Y.K., Gilam,

G., Banerjee, S., Delp, S.L., Glover, G.H., et al. 2022. Confounds in neuroimaging: A

clear case of sex as a confound in brain-based prediction. Frontiers in Neurology. 13.

Weis, S., Hodgetts, S., and Hausmann, M. 2019. Sex di↵erences and menstrual cycle e↵ects

in cognitive and sensory resting state networks. Brain and cognition. 131, 66–73.

Weis, S., Patil, K.R., Ho↵staedter, F., Nostro, A., Yeo, B.T., and Eickho↵, S.B. 2020. Sex

classification by resting-state brain connectivity. Cerebral cortex. 30(2), 824–835.

Werling, D.M. and Geschwind, D.H. 2013. Sex di↵erences in autism spectrum disorders.

Current opinion in neurology. 26(2), 146.

Westman, E., Simmons, A., Zhang, Y., Muehlboeck, J.-S., Tunnard, C., Liu, Y., Collins,

L., Evans, A., Mecocci, P., Vellas, B., et al. 2011. Multivariate analysis of MRI data

109



for Alzheimer’s disease, mild cognitive impairment and healthy controls. Neuroimage.

54(2), 1178–1187.

Weygandt, M., Hackmack, K., Pfüller, C., Bellmann–Strobl, J., Paul, F., Zipp, F., and

Haynes, J.-.-D. 2011. MRI pattern recognition in multiple sclerosis normal-appearing

brain areas. PloS one. 6(6), e21138.

Weygandt, M., Hummel, H.-M., Schregel, K., Ritter, K., Allefeld, C., Dommes, E.,

Huppke, P., Haynes, J., Wuerfel, J., and Gärtner, J. 2015. MRI-based diagnostic
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